
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1983

Microprocessor based modular support for an
operating system
Ahmed Amin Elamawy
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Elamawy, Ahmed Amin, "Microprocessor based modular support for an operating system " (1983). Retrospective Theses and
Dissertations. 7710.
https://lib.dr.iastate.edu/rtd/7710

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F7710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F7710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F7710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F7710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F7710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F7710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F7710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/7710?utm_source=lib.dr.iastate.edu%2Frtd%2F7710&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of "sectioning" the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

Universî
Miodnlms

International
300 N.Zeeb Road
Ann Arbor, Ml 48106

www.manaraa.com

www.manaraa.com

8323279

Elamawy, Ahmed Amin

MICROPROCESSOR BASED MODULAR SUPPORT FOR AN OPERATING
SYSTEM

Iowa State University PH.D. 1983

University
Microfilms

I nt6rn 6ltiO nsl 300 N. zeeb Road, Ann Arbor, Ml 48106

www.manaraa.com

www.manaraa.com

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages

2. Colored illustrations, paper or print
y

3. Photographs with dark background

4. illustrations are poor copy

5. Pages with black marks, not original copy

6. Print shovt/s through as there is text on both sides of page

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements

9. Tightly bound copy with print lost in spine

10. Computer printout pages with indistinct print

11. Page(s) lacking when material received, and not available from school or
author.

12. Page(s) i

13. Two pages numbered

seem to be missing in numbering only as text follows.

I . Text follows.

14. Curiing and wrinkled pages

15. Other

University
Microfilms

International

www.manaraa.com

www.manaraa.com

Microprocessor based modular support

for an operating system

by

Ahmed Amin Elamawy

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Electrical Engineering
Major: Electrical Engineering (Computer

Engineering)

Approved:

in Charge of Major Work

Ma)y Department

For the Graduate iCollege

Iowa State University
Ames, Iowa

1983

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

TABLE OF CONTENTS

Page

CHAPTER I. INTRODUCTION 1

CHAPTER II. LITERATURE REVIEW 4

CHAPTER III. MODULAR MULTI-MICROPROCESSOR BASED SUPPORT FOR
AN OPERATING SYSTEM 9

Support Modules 10

Reliability 13

Cost 14

Other Aspects 14

CHAPTER IV. SUPPORT MODULE FOR A DEADLOCK AVOIDANCE SCHEME 16

Introduction 16

The Need for Hardware Support 20

The Support Module 20

0(km) module, k = 1 22

Operation 24

0(km) module, k > 1 27
0(km) module, k < 1 27

Module Organization 28

CHAPTER V. A MODULE FOR THE EXACT IMPLEMENTATION OF THE LEAST
RECENTLY USED REPLACEMENT POLICY 31

Introduction 31

Exact LRU Support Module Organization 36

Submodule Organization 37

Detailed Submodule Design 41

The microprocessor 42
Arbitration 43
Random Access Memory (RAM) 43

www.manaraa.com

Page

Read Only Memory (ROM) ^7
The TIMER 49
Decoding and control logic 33
Output latches 53

Address Stream Generation Module 54

Detailed Circuit Diagram 58

The LRU Routine ^3

An LRU Module Overview 70

CHAPTER VI. ADDRESS GENERATION ROUTINES, EXPERIMENTAL DATA,
AND SOME REMARKS 75

Address Generation Routines 75

Experimental Data 82

Remarks and Observations 104

Reducing LRU module loading on main system 105
A zero load LRU module 108

CHAPTER VII. CONCLUSION 110

BIBLIOGRAPHY 117

ACKNOWLEDGMENTS "9

APPENDIX A. ROUTINE] 120

APPENDIX B. R0UTINE2 121

APPENDIX C. ADDGENl 123

APPENDIX D. ADDGEN2 126

APPENDIX E. ADDGEN3 128

www.manaraa.com

iv

LIST OF FIGURES

Page

Figure 1. Communication technique between the support system
and the main system 11

Figure 2. A homogeneous main system supported by a hetero­
geneous modular support system 11

Figure 3- Organization of the 0(m) module 23

Figure 4. Hardware substitute for a deadlock avoidance
algorithm 29

Figure 5. 0(km), k < 1 module organization 29

Figure 6. Block diagram of the LRU module 38

Figure 7. LRU submodule organization 39

Figure 8. RAM addressing mechanism 46

Figure 3. RAM data buffering 48

Figure 10. The TIMER and its buffering 51

Figure 11. Time recording timing diagram 52

Figure 12. Address generation circuit block diagram 55

Figure 13. Address generation routine "ADDGEN4" 56

Figure 14. Detailed diagram of the LRU submodule and the
address generation module 60

Figure 15. A photograph of the built circuits 62

Figure 16. Flow chart of LRU routine 64

Figure 17- Exact LRU program "R0UTINE3" 65

Figure 18. Possible connection between output latches and the
supervisor subnodule 72

Figure 19. ADDGENl sequence (one NOP instruction in each loop) 76

Figure 20. Address sequence generated by ADDGEN2 (three NOP
instructions are used) 78

www.manaraa.com

V

Figure 21.

Figure 22.

Address sequence
instructions are

ADDGEN4 sequence
in the loops)

generated by ADDGEN3
used)

(no NOP instructions

Page

(no NOP

79

included
80

www.manaraa.com

LIST OF TABLES

Page

Table 1. Key to different experimental data tables 83

Table 2. ADDGENl and ROUTINEl (one NOP instruction) 85

Table 3. ADDGENl and ROUT INE2 86

Table 4. ADDGENl and R0UTINE3 87

Table 5. ADDGEN2 and ROUTINEl 88

Table 6. ADDGEN2 and R0UTINE2 89

Table 7. ADDGEN2 and R0UTINE3 90

Table 8. ADDGEN3 and ROUTINEl 91

Table 9. AD0GEN3 and R0UTINE2 92

Table 10. ADDGEN3 and R0UTINE3 93

Table 11. ADDGEN4 and ROUTINEl 94

Table 12. ADDGEN4 and R0UTINE2 95

Table 13. ADDGEN4 and ROUTINES 96

Table 14. Performance of ROUTINEl 99

Table 15. Performance of R0UTINE2 101

Table 16. ROUTINES performance statistics 103

www.manaraa.com

1

CHAPTER I. INTRODUCTION

It was estimated in 1972, that every 5% more facility put into a

computer system cost 20% more to achieve, which represented a rapidly

rising cost curve [1]. This was mainly due to the need for a more com­

plex operating system.

The complexity of an operating system designed for a multiprocessor

system is usually greater than that designed for a single processor

system [2]. In the general-purpose multi-arithmetic logical unit

configuration, the difficulty is mainly in the implementation of an

integrated control within the operating system. For example, synchroniza­

tion, task splitting, and scheduling are areas where the presence of

more than one processing unit increases the supervisor's complexity.

As is well-known, most of the computer system's cost goes to the

software design, especially the operating system. A strong, fast-rising

relationship between the complexity of the operating system and the total

system cost mandates the need for a more efficient utilization of cur­

rent technology to support the operating system. It is important to

notice that a more complex operating system not only means a higher

system cost, but also means, a larger percentage of the processing power

devoted to executing the operating system code. Thus, the existence of

powerful, fast, inexpensive microprocessors makes it worthwhile to study

the possibility of utilizing current technology to support the execution

of some operating system functions. This is especially attractive in

the case of a modular, structured, operating system because a high

www.manaraa.com

2

degree of parallel operating system processing should be achiev­

able.

Extensive studies have shown that a computer system formed by

interconnecting many small micro or mi ni processors achieves a better

cost/performance ratio and higher reliability than a powerful, large,

and complicated single processor system [3, 4, 5]. This concept is

appealing, not only at the computer system level, but possibly at the

operating system level. If we can look at the operating system by it­

self as a system, we may think about the possibility of multiprocessing

some of its functions, especially those that lend themselves to

parallel processing. Multiprocessing of operating system functions

using inexpensive VLSI chips is the subject of this dissertation. To

prove the point, a submodule for the exact implementation of the least

recently used replacement policy in a demand paging system was designed,

built, and tested. This work is described in the various chapters of

the dissertation as noted below.

Chapter II has been devoted to reviewing some related literature.

In Chapter III, an approach for supporting an operating system has been

introduced. In Chapter IV, a specific example of a support module for

a deadlock avoidance scheme has been described along with its related

literature review. Chapter V contains a detailed description of the

design of a module to implement the exact least recently used replace­

ment policy. Also in Chapter V, the description of a submodule that was

designed, built, and tested is given along with the least recently used

routine, hardware circuit, and test circuit details. The data obtained

www.manaraa.com

3

from testing the submodule along with some remarks and comments are

given in Chapter VI. Chapter VII contains the conclusion.

www.manaraa.com

4

CHAPTER II. LITERATURE REVIEW

The amount of literature dealing with the subject of microprocessor

based support for an operating system is very limited. However, some

publications can be related to this subject in a broad sense. These

will be reviewed in this chapter. Since Chapters IV and V will pro­

vide specific application examples, it is more appropriate to review

their related literature in those chapters.

A study in 1972 provided an example of operating system measure­

ments and indicated the need for better hardware assistance in monitor­

ing and adjusting the operating system performance [6]. Afterwards,

multiprocessing systems and their operating systems were subjected to

extensive research. It was found that multiprocessing systems achieved

a better cost/performance ratio and better reliability than single

processor systems [3, 4, 5]. One study used analytical and numerical

techniques to compare job turnaround time and throughput rate of three

multiprocessor system models with that of a single central processing

model of equal processing rate [4]. The results indicated that multi­

ple slow processors may sometimes be used to replace a fast central

processor without significant performance degradation. The investigator

concluded that this would be increasingly attractive as the cost of

microprocessors continued to decrease. An interesting paper published

in 1977 discussed different multiprocessor systems and envisioned two

main types of control in multiple instruction multiple data (MIMD)

architecture [2]. The first was fixed mode, in which one or more

processors were dedicated to execute the operating system. When some

www.manaraa.com

5

other processor terminated its task, or when all other processors

were busy and a higher priority task had to be initiated, it was the

responsibility of the dedicated processor(s) to schedule, terminate,

and/or initiate processes. An advantage of such a scheme is that a

special purpose hardware can be embedded in the design, hence decreas­

ing the executive's overhead. The other type of control was the float­

ing control mode. In this mode, each processor could have access to

the operating system and could schedule itself. This mode had a reli­

ability advantage over the fixed mode. The investigator concluded that

despite the decreasing cost of hardware due to large scale integration,

the increased complexity in communication and the overhead in the

operating system should be taken seriously when thinking about

distributed function systems. The investigator also suggested that the

challenging problems in the design of coherent architectures of viable

and efficient operating systems, and in the inclusion of evaluating

tools both during the design process and in the completed system itself,

would restrict for some time the range of useful systems.

Although it has become an established fact for many applications

that multiprocessor systems are superior to single processor systems

in terms of the cost/performance ratio despite the increased operating

system complexity, it is not clear whether a homogeneous architecture

is better to adopt. Apparently, homogeneous systems have some

advantages in terms of reliability and design simplicity [7], whereas

heterogeneous architectures have the merits of flexibility and per­

formance improvement with appropriate load sharing [8].

www.manaraa.com

6

A very interesting system with strong relationship between hard­

ware architecture and the operating system architecture was described

in 1977 [3» 9]. The system was called Poly-Processor System (PPS).

The system was developed for time sharing services and consisted of a

processor subsystem, a memory subsystem, and a connection subsystem.

The processor subsystem consisted of a number of functionally special­

ized processors, which covered six functional classes. The set of func­

tions for each processor class corresponded to the partitioning of con­

ventional operating system functions. Furthermore, the functions of

each processor class were divided into functionally specialized sub­

classes and each of six processor classes consisted of many sub-

processors or modules. The memory subsystem consisted of six memory

classes, which were categorized according to the behavior and character­

istics of stored information. These classes were introduced to add

changeability to the functions of processors, to prevent errors from

spreading, and to reduce the memory access conflicts. Since the reli­

ability of the system was affected by rigidly assigning the functions to

the processor, a dynamic microprogramming technique was used to move a

process from a failed processor to a processor that had at least as much

connection as the failed processor.

The most important issue in the design of such a multiprocessor

system as the PPS was to devise a connection subsystem between proces­

sors and memory modules that would be effective for highly parallel and

closely cooperative processing, in order to achieve parallel processing,

information, i.e. programs and data used in the system, was divided into

www.manaraa.com

7

three categories: private information, command data, and shared data.

Private information was stored in a memory provided exclusively for

each processor. Command data which were used to initiate a program

in another processor such as requests, inquiries, and answers, were

transferred directly between processors. Shared data were stored in

a memory shared by several processors. For command data and shared

data, two different connection modules were provided; the interproces-

sor connection module used a common bus technique, and the processor-

memory connection module used a crossbar switch technique.

Extensive studies of the PPS system pointed out the validity of

relating the hardware architecture to the operating system structure

[3, 9]. However, the system suffered some drawbacks which were noted

by the authors who described and studied the system's performance.

These drawbacks can be summarized as follows:

(1) The system was inflexible since it was hard to modify and

expand.

(2) The system was tailored to fit a time-sharing service giving

no potential for applicability in other system environments.

(3) Reliability was relatively limited by the small number of

processors connected to main memory.

(4) System cost increased largely because of implementing the

interprocessor class.

(5) System performance was degraded by the command data trans­

mission overhead.

However, the PPS-related studies certainly established a good

www.manaraa.com

8

background in searching for other approaches.

It is appropriate to conclude the literature review by remarking

that there should be ways to support and multiprocess operating system

functions regardless of the hardware architecture. It should be possi

ble to apply many concepts whether the supported system is a single or

multiprocessor system.

Additional literature will be reviewed in Chapters IV and V when

specific operating system support examples are to be introduced.

www.manaraa.com

9

CHAPTER III. MODULAR MULTI-MICROPROCESSOR BASED

SUPPORT FOR AN OPERATING SYSTEM

On the average, 10-30% of a computer system's processing time is

spent in executing operating system-related activities [6]. This not

only represents an overhead in terms of central processing unit time,

but can also be viewed as a load on other system resources such as

main memory and shared buses, thus limiting the system performance. It

can be said that in some way it is wasteful to execute some operating

system functions on a main processor or processors. The data provided

on the PPS system performance indicated that, on the average, 12 bytes

of command data passed to an operating system module every 250 accesses

by another processor [3]* The command data were used to initiate a

program in another processor. It consisted of command code codes and

parameter words which specified the program execution details. This

was the case when only six modules were incorporated. If the number of

modules has been increased such that every module became responsible

for only one function, one would have expected a transaction size to be

less than 12 bytes (no need for command code). Moreover, the inter-

processor communication period could have been much longer.

An approach that might provide better cost/performance ratio will

now be described. The approach is general enough so that it is appli­

cable to different system architectures. The idea is to use as many sup­

port modules for the operating system as needed. Each module contains

one or more microprocessors. The operating system may be viewed as com­

posed of two parts: (1) A software part residing in main memory; and

www.manaraa.com

10

(2) A microprocessor-based modular support part.

Communication between the two parts is carried out through dedi­

cated, relatively small, reserved areas of main memory space. This is

shown in Figure 1. The communication area of a module is also a part

of the module's memory space and is accessible by both the main system's

processor(s) and the module's microprocessor(s). The rest of the

module's memory is private to the module and is only accessible by some

or all the microprocessors (if more than one microprocessor is utilized

in the module). This kind of architecture makes the Idea applicable to

a wide spectrum of system architectures. This occurs because common

memory accessible by the main system processor(s) almost always exists

in tightly coupled multiprocessor systems and certainly in single

processor systems. Consider, for example, a single bus homogeneous

multiprocessor system supported by a modular heterogeneous multi-

microprocessor system as shown in Figure 2. Different aspects regarding

the design and performance of such a system can now be pointed out.

Support Modules

Each support module consists basically of:

(1) One or more microprocessors;

(2) A private memory; and

(3) A communication memory accessible from the main system bus

and a dedicated bus connected to the microprocessor(s).

The private memory is generally larger than the communication area and

can be slower. The former need only match the microprocessor's speed,

while the communication memory has to be fast enough to match main

www.manaraa.com

11

MAIN
SYSTEM
PROCESSOR(S)

\r-y

I COMM. AREAS

SW OS PART

MODULE 1

MODULE N

MAIN MEMORY SUPPORT SYSTEM

Figure 1. Communication technique between the support system and the
main system

PROCESSOR PROCESSOR PROCESSOR

MAIN BUS

MODULE 1
MODULE 2

COMM. AREAS

MODULE N
MAIN MEMORY SUPPORT

SYSTEM

Figure 2. A homogeneous main system supported by a heterogeneous
modular support system

www.manaraa.com

12

system's processor(s) speed. Some advantages of such an organization

are:

(1) Memory space, as seen by the main system, is much less than

the actual memory space used by the module to process a

function.

(2) Slower, hence cheaper, private memory is used to execute

operating system functions. However, the overall system

speed may improve because functions will be executed in

parai lei.

(3) Module demand on main system resources is minimum, leaving

more resources such as central processing unit time, main bus,

memory space, etc., for productive work.

Different kinds of microprocessors may be used in different modules. The

selection of a certain kind for a module should be dependent on the func­

tion to be performed, as well as the characteristics of the microproces­

sor. The number of micros in a certain module should depend on the fre­

quency the module is invoked, as well as the nature and length of the

function. Some modules might have to perform jobs like monitoring func­

tions or performance measurement. Such modules would have to submit a

report to the main system which uses the report either to dynamically

adjust some operating system parameters, or to help some operating

system functions such as the implementation of the exact least recently

used replacement p>olicy in a demand paging system. In such cases, the

number microprocessors would depend on the arrival or event rate as well

as the code execution time of a microprocessor's routine.

www.manaraa.com

13

Relîabi1îty

Because of the specialized nature of the modules, it might seem

that there is a reliability problem. However, many techniques to improve

the reliability of the support system are available; for instance,

redundancy within a module, or redundancy at the module level, may be

implemented at some insignificant cost. Besides, an extra microproces­

sor per module can be employed to perform supervisory and status check­

ing functions of the other elements. In case of a microprocessor

failure, the supervisor micro may take over its job and inform the main

system about the problem. Redundancy at the module's level might also

be feasible because of the low cost of microprocessors and of hardware

in general.

Another interesting idea that could enhance both reliability and

flexibility is to use a pool of microprocessors which are assigned func­

tions dynamically. This idea was Implemented in designing a file

storage/retrieval system by Trans-A-File Co. [10]. The system used a

set of microprogrammed microprocessors to perform a wide variety of

tasks that were dynamically allocated to it. The control programs were

stored on a tape and transferred upon allocation of a task to a micro­

processor's memory. The trade-off in the design was mainly the response

time required to reconfigure the system. However, in our case the idea

may be utilized in the suggested support system to assign the function

of a failed module to a stand-by module.

An idea that can result in a very reliable system is to store all

module function codes in secondary memory. In case of module's failure.

www.manaraa.com

14

its corresponding code is transferred to the main memory and is

temporarily executed by the main system processor(s) without support.

Cost

With the constant decline in the cost of powerful microprocessors

and hardware in general, it is feasible to use the brute-force approach

which employs a large number of microprocessors to perform some func­

tion. For example, the author designed and built a part of a module

(submodule) for implementing the exact least recently used replacement

policy in a demand paging memory management system with a hardware cost

around $300. Two MC68000 microprocessors at $104 each were employed for

both testing and implementing the desired function. If a whole module

is to be built of eight submodules, only nine microprocessors would be

needed and the total cost of hardware should be less than $3,000. This

figure is considered very small compared to the total cost of a multi­

programming computer system, and is nearly negligible.

Other Aspects

Some of the operating system functions may not lend themselves to

parallel processing or to the idea of support. However, many functions

do lend themselves very well to parallel or support processing. These

include housekeeping work, scheduling, and monitoring functions. Some

examples are sorting and maintaining lists, priority updating, deadlock

avoidance-detection schemes, memory replacement algorithms, preparing

compaction addresses in segmentation systems as well as finding enough

space for incoming segments, job dispatching in multiprocessor systems.

www.manaraa.com

15

and dynamic bus allocation in multi-bus architectures.

In the next chapter, we will give a specific example of a support

module for a deadlock avoidance scheme. In Chapter V, the description

of a module for exact implementation of the least recently used algorithm

will be discussed, along with the detailed design of a submodule that

was actually built and tested.

www.manaraa.com

16

CHAPTER IV. SUPPORT MODULE FOR A DEADLOCK AVOIDANCE SCHEME

Introduction

Having introduced a general approach to support an operating

system using multi-microprocessor based modules, we are now ready to

give the first of two specific examples. The second will be given in

the next chapter.

Before introducing our suggested support module for deadlock

avoidance schemes, it is appropriate to review briefly some related

1iterature.

One of the operating system functions is to allocate system re­

sources to competing processes. The allocation scheme is usually de­

signed to take care of the possibility of deadlocks. One way a deadlock

occurs is when a process holding some resource has to wait for a resource

held by another process, while the latter is also waiting for the

former to release a resource it holds. Three possible methods to

handle deadlocks are available. Each has its own merits and demerits.

These methods are:

(1) Deadlock detection and removal;

(2) Deadlock prevention, and

(3) Deadlock avoidance.

Detection algorithms can detect a deadlock that has already occurred

and they then try to find a minimum cost way to remove it by deallocating

some resources [11, 12]. This approach has the disadvantage of a high

time penalty if the resources to be deallocated are non-preemptive.

Moreover, the cost of running a detection and removal algorithm in terms

www.manaraa.com

17

of overhead is high, especially if the deadlocks occur frequently.

An algorithm is said to have time complexity 0(f(n)) if the number

of steps it needs to process data of "size" n is cf(n), where f(n) is

some function of n and c is a constant [13]. The time complexity of

the algorithm provides an approximate indication of the time required

to execute it on some computer.

One of the well-known detection algorithms is O(mn^), where m is

the number of resource types and n is the number of tasks [14]. Another

algorithm that represents less overhead is 0(mn), where m and n are as

defined above. However, this latter algorithm requires two ordered

lists which implies some extra overhead [11, 12].

A more general technique assigns a fixed cost c. to the removal

(forced preemption) of a resource of type r. from a deadlocked task

that is being aborted [12]. The algorithm finds a subset of resources

that would remove a deadlock at minimum cost.

In general, all detection algorithms insure high supervisor over­

heads as well as swapping or I/O losses.

Prevention techniques are, in general, designed to exclude the

possibility of a deadlock by removing one or more of the conditions

necessary for a deadlock to occur. Three different approaches are sug­

gested for the prevention of a deadlock [15» 16]. Nonetheless, each

approach has a major disadvantage. The disadvantage of the first

approach is poor utilization of system resources by allocating all

resources a process needs all at once before it starts execution.

The second approach suffers from the losses due to allowing preemption.

www.manaraa.com

18

The last approach incurs supervisor overhead and poor utilization of

resources.

All avoidance techniques use advance information about process

resource requirements. Different models have been developed, each of

which is different in the amount of information assumed available.

Two extreme models will shortly be discussed, intermediate models

moderating the drawbacks of the extremes are available. The extreme

models are usually simpler, less complicated than others but not neces­

sarily better in terms of overhead. However, simple algorithms may be

best suited for microprocessor based support which would take care of

the overhead problem, such that main system resource demand could be

less than that needed by a fairly complicated algorithm without support.

This should be considered an advantage, since simple algorithms with

high overhead tend to reduce software complexity, and hence overall

system cost. The support hardware would eliminate the overhead penalty.

In other words, we don't have to design more complicated algorithms to

reduce the overhead; the support system will take care of that.

The first extreme model is the basic model. It assumes the avail­

ability of full information (which is impractical). The model consists

of a sequence of process steps; during each step the resource usage

remains constant. At the beginning of each step, an algorithm is

invoked to determine whether the allocation of the requested resources

is safe or not. The state of the system at time "t" relates requested

and allocated resources. If it is possible to find a valid sequence of

the uninitialized process steps such that all processes in the system

www.manaraa.com

19

can run to completion, the state is safe; otherwise, the state is not

safe. This model is clearly impractical and implies high overhead

since the algorithm has to run before every process step can execute.

The second model is more practical [14, 1?]. It assumes that only

the maximum number of resources needed by each process at any time

during its execution is known. In particular, each process has a

resource vector. Each element in a resource vector represents the

maximum number of a certain resource type that will be required by the

process at any time during its execution. The algorithm utilizes an

unordered list of vectors, each of which represents the rank of a

process. The rank of process (i) is defined as the difference between

the claim vector Cj and the allocation vector a. (a. represents the

already allocated resources). The algorithm checks the safety of a

request by trying to find a sequence in which a process can run to

completion if the request is granted; otherwise, the request is denied.

Fortunately, there is no need for backtracking with this algorithm [17].

However, the algorithm is 0(m), where "m" is the number of processes

in the system. As "m" gets larger than five,the algorithm's overhead

becomes unacceptable.

Another available algorithm is Ofm&ggm) [11]. It utilizes a

heapsort of the list. However, the algorithm described in [17] will

be considered just to prove that even simple algorithms can be sup­

ported to execute at a better speed than more sophisticated ones.

www.manaraa.com

20

The Need for Hardware Support

As might have been already noticed, the overhead incurred in

deadlock related algorithms is a major concern in designing this part

of the operating system. It has been predicted that in future systems

sharing an increasing number of individual users, the deadlock problems

are likely to acquire greater significance [18]. It has been also pre­

dicted that systems which provide a common set of large files (or data

bases), available for many users with different access rights, will

consider an access to a small subset of records as a resource usage.

Based on the above, it seems appropriate to consider a hardware

support module for this important part of the operating system.

The Support Module

The support module that will be presented is capable of reducing

to a large degree the amount of overhead encountered in traditional

deadlock avoidance schemes. The idea can also be extended to work with

detection or prevention algorithms. For the sake of an example,

Habermann's model for deadlock avoidance will be adopted [14, 1?]. In

order to understand the function and operation of the module, a brief

description of the algorithm follows.

The vector rank, represents the state of process (i) according

to the relation

rank. = Cj - a.

where c. is the claim vector of process (i) and a. is its current

www.manaraa.com

21

allocation. Every element of the vector represents a resource type.

A system vector "rem" (for the entire system) represents the remaining

number of unallocated resources of all resource types. Upon a request

by a process for resource allocation, the algorithm tries to find a

sequence in which all processes can run to completion if the request

is granted by searching an array that has all process state vectors

[rank, iel, 2, ..., n] as elements. The array is unordered and the

search time is 0(m), where m is the number of processes currently

holding or requesting resources, it can be proven that backtracking is

unnecessary because if an nth process can be found to satisfy the

relation

rank. ̂ rem + ^ a.
' j<î J

while an (n+l)st process cannot be found to satisfy the (n+l)st rela­

tion; the allocation is not safe [17].

The support module employs a number of microprocessors plus some

necessary hardware. The number of microprocessors is somewhat arbi­

trary and can be chosen to fit a desired speed, it is possible to

execute Habermann's model as 0(km) instead of O(m^), where k is an

arbitrary speed factor that also defines the number of microprocessors

needed and, consequently, the amount of hardware. It is worth mention­

ing that the support idea makes it feasible to apply Habermann's model

for systems with m > 5 which were supposed to have a prohibitive over­

head.

www.manaraa.com

22

0(km) module, k = 1

This kind of module is feasible only when m is not very large.

However, acceptable values of m can be much larger than 5 and m=30

could be considered reasonable (m is directly related to the degree of

multiprogramming). In any case, m is limited by the number of non-

preemptive resources.

The module contains a total of (m+1) microprocessors of which m

microprocessors are to serve the m processes in the system. One micro­

processor will serve as the module's supervisor. A microprocessor that

represents a process will be called a process micro. It must be men­

tioned that the number of active processes in the system will vary with

time; however, the number of process micros can be selected as the

maximum number of active processes allowed by the system at any given

time. Another possibility is to select the number statistically, such

that the probability that a process gets blocked because there is no

process micro available is less than some small value, in such a case,

the correspondence between a process and a microprocessor would be vari­

able with time and it is the responsibility of the supervisor to assign

processes to microprocessors. Figure 3 shows the organization of the

module. A small bus is utilized to connect all the microprocessors

within the module, while all communication between the main system and

the module is done through a small area of main memory space accessible

only by the supervisor.

Associated with process micro (j) are two flags 'ok^' and 'out of

SRCHj'. Also, three external registers, Rlj, R2j, R3j, are associated

www.manaraa.com

OK ACK

Figure 3.

LU

ae

o oo o

o
to

OK M

OKI

OUT OF
SRCH M

OUT OF
SRCH 1

COMM
AREA

PROCESS
MICRO 1

PROCESS
MICRO M

COUNTER

TIMER

R12
R13

RIM

SUPERVISOR
MICRO­
PROCESSOR

Organization of the 0(m) module

www.manaraa.com

24

with process micro (j) (jel, 2, ...» m). Rlj and R2j will be used as

communication buffers between the microprocessors within the module;

therefore, they should occupy the same locations in all microprocessors'

address space. R3j will act as a status and control register. All

registers are private to the module's memory space and are not accessi­

ble by the main system. The function of the two flags associated with

each process micro will be discussed when the operation of the module is

to be introduced.

Two modes of operation control the local bus. These modes are

parallel write and addressed read/write. Part of the address on the bus

defines the mode of the bus cycle. Registers Rlj (jel, 2, —, m) will

always be written into simultaneously through a parallel write cycle

initiated by the supervisor and, hence, they should only occupy bl bytes

of its address space, where bl is the number of bytes in R1. This also

applies to registers R2j (jel, 2, m) except that any microprocessors

in the module can initiate a parallel write into them. Registers R3j

(jel, 2, ..., m) are to be addressed separately only by the supervisor,

and hence occupy mb) bytes of its address space, where b3 is the number

of bytes in R3. Registers Rlj (jel, 2, m) will be used to receive

supervisor messages, while registers R2j (jel, 2, m) will be used

to store the rem vector after each search step. As mentioned before,

registers R3j (jel, 2, ..., m) are to represent control/status registers

for the process micros.

Operation The supervisor microprocessor continuously monitors

the communication area looking for a search message from the main system.

www.manaraa.com

25

When one is found, it starts a search procedure by broadcasting the

request and the requesting process number to all Rlj registers. It

also calculates a modified rem vector that corresponds to the rem

vector if the request is granted. The modified rem vector is broad­

casted to all R2 registers using a parallel write mode cycle. Each

process micro compares the requesting process number to the number of

the process it represents. The one that has a match becomes responsi­

ble for starting the first search step by activating the search line.

Upon receiving the search signal, all active process micros start

searching by comparing their rank vectors with the modified rem vector.

If rankj is less than or equal to the rem vector, then process(j) is

capable of running to completion if the request is granted, and hence,

the process micro(j) sets its associated 'Ok^' flag. Note that only

micros that have active processes in the system should participate in

the search; these will be called active micros. All Ok^ (jel, 2, —, m)

are daisy chained, such that if any of them is set during a search

step, a signal is generated to increment a counter 'COUNT'. The

supervisor monitors the counter and whenever it detects an increment,

it generates an acknowledge signal 'OKACK' that ripples through the

daisy chain and stops at the first set 'Ok^' flag, generating another

signal that sets the corresponding 'OUT OF SRCH' flag. This tells

process micro(N) that it has been accounted for, and that it should get

out of the search after initiating the next search step. Process

micro(N) calculates the new modified rem vector, stores it into all

R2j (jel, 2, ..., m) registers of active micros. A bit in R3j can

www.manaraa.com

26

represent the status of processmîcro(j) "active" or "inactive". This

bit may control the acceptance of parallel write operations in R2j.

An out of search process micro is inactive, and it is possible to in­

clude the 'OUT OF SRCH' flag in R3. Setting the 'out of SRCH' flag

should also set the active/inactive bit to 'inactive' in R3. After

broadcasting the new rem vector, process micro(N) clears all 'OK'

flags by activating the 'OKCLEAR' line. Finally, it activates the

'SEARCH' line initiating a new search step. The search continues until

either all search steps have been completed or an unsuccessful search

step is encountered. A successful search means that the number in

the counter is equal to the number of active processes, and in such a

case, the supervisor has to pass a message to the main system indicat­

ing the safety of the request. However, any search step that ends

without any 'OK' flag being set means that the result of the search is

"not safe," and a message in that effect has to be passed to the main

system. For simplicity, it is possible for the supervisor to set the

"TIMER" to a certain value corresponding to the number of active

processes before initiating the search. The "TIMER" interrupts the

supervisor at the end of the expected search period, so that the super­

visor can check the counter "COUNT" and determine the safety status of

the request.

The support module makes the search time 0(m), since only m search

steps are needed at the most. The savings, as compared to Habermann's

algorithm, come from the fact that up to m search steps In Habermann's

model correspond to one search step in our case. In other words, up to

www.manaraa.com

27

m search steps are parallel processed in one search step time in the

support module.

0(km) module, k > 1

The idea and basic operation are the same as the 0(m) module

discussed above except that each process micro will be responsible for

k processes instead of only one. In this case, k 'OK' flags and k

'OUT OF SRCH' flags will be needed per microprocessor. Also, 3k external

registers per microprocessor are to be used. However, it is possible

to use the same amount of hardware per process micro as the 0(m) case

giving the microprocessor more work to do internally, on in a private

read/write memory such that a process micro can distinguish different

process states.

It is clear that a trade-off between speed and the amount of hard­

ware is needed. This is because hardware savings are at the expense of

execution time. However, this kind of module (k > 1) might be necessi­

tated by a large degree of multiprogramming.

0(km) module, k < 1

The idea and module organization are different in this case. It

is feasible only when the number of non-preemptive resources in the

system is relatively small. The idea is based on the following observa­

tions:

(!) Limited number of resources means limited number of competing

processes.

(2) The state of the system at any given time is uniquely

www.manaraa.com

28

determined by the process ranks.

(3) Not all process rank combinations are feasible [17]. Hence,

only subset of all system states (determined by process

ranks) are to be accounted for.

As discussed above, when all process ranks are known, it is possi­

ble to run an algorithm to determine the safety condition of the state.

Thus, if we consider the ranks as inputs, the state as an output, it is

possible to design some hardware to substitute the algorithm as shown

in Figure 4.

The hardware is to consist mainly of a Read Only Memory (ROM) and

some encoding logic. The ROM stores states corresponding to every

feasible rank combination. Only one bit per combination is required.

The value stored in a certain bit is determined during the design phase

by running the algorithm for the corresponding rank combination.

Module Organization

Only one microprocessor is needed, as shown in Figure 5. It

receives requests from the main system as discussed before. One register

per process is used to hold the rank of the process. The combination of

all register contents represents the state of the system. Thus, all we

need to do is to encode all register contents to produce an address

that addresses the ROM. This can be implemented by using a tree of

Programmable Logic Arrays (PLAs). Each PLA at the first level combines

and encodes two or three registers. At the same time, it suppresses

redundant states that are not feasible before presenting its output to

the next level. The process is repeated until final address

www.manaraa.com

29

HARDWARE STATE

Figure 4. Hardware substitute for a deadlock avoidance algorithm

00
00

cc

PLA N

PLA

PLA

PLA

PLA
RANK M

RANK 2

RANK!

ROM

SUPERVISOR
MICROPROCESSOR

Figure 5. 0(km), k < 1 module organization

www.manaraa.com

30

(representing the state of the system) is presented to the ROM. The

output of the ROM (one bit) is the safety state of the allocation

request. The microprocessor receives the result and returns a message

to the main system. The microprocessor has to return the state of the

requesting process to its original state before the request if the

request is denied. If the request is safe, the modified process state

remains unchanged until the process makes another request or until it

releases some or all the resources it holds.

Clearly, the module is very fast compared to the two modules

previously described. However, it is only suitable when small numbers

of non-preemptive resources are employed in the system.

www.manaraa.com

31

CHAPTER V. A MODULE FOR THE EXACT IMPLEMENTATION OF THE

LEAST RECENTLY USED REPLACEMENT POLICY

In our second example, we will not only provide the idea of how to

implement the exact Least Recently Used (LRU) replacement policy in a

demand paging system, but also give the detailed design of a submodule

that was designed, built, and tested. The results proved the correct­

ness of the idea and the feasibility of the technique. The next chapter

will cover the results of the experiment, while in this chapter all

design and implementation details will be given.

Introduction

A replacement policy in any memory management system has to find

obsolete information in main memory. This is necessary before any new

information can be loaded into the Main Memory (MM) if there is no free

space available. Free space in MM is created either when information

residing in MM is deleted or by purposely swapping out information which

is of no immediate interest. If information is deleted, the cleared

space can simply be added to the pool of free space. If free space

must be created by swapping, we need a criterion by which obsolete

information can be distinguished from active information. The right

time to look for obsolete information is when memory space is requested

while the free space is insufficient. This is why an algorithm which

selects the information to be swapped out is called a replacement

algorithm. A replacement algorithm applied by a demand paging system

allows referencing inaccessible pages and interprets such a reference

www.manaraa.com

32

as a request to make the page accessible. This is called a "page

fault." If handling a page fault is left to the operating system,

the operating system must find an obsolete page which can be exchanged

for the requested page. The overall objective of a two-level storage

management is to have those pages in main memory which have the highest

probability of being referenced in the near future. Therefore, nearly

all replacement algorithms have as their objective guessing which page

in main memory currently has the lowest probability of being referenced.

This page is then distinguished as the result of the replacement

algori thm.

The simplest replacement policy selects a page at random. This

algorithm is implemented by a designer who believes that it is not

possible to make an intelligent guess as to which page is least likely

to be referenced in the near future. Of course, implementing this policy

is trivial, but its performance is poor [17].

Two other straightforward algorithms are the First-In-First-Out

(FIFO), and Round Robin (RR). The FIFO replacement algorithm is based

on the observation that the probability of referencing a page in the

near future is likely to be a decreasing function of the time that the

page resides in main memory. It seems, therefore, that the least harm

is done if the oldest page is swapped out, that is, the page that was

brought into main memory the longest ago. The FIFO replacement algorithm

needs the support of a FIFO queue in which pages in the frames are ordered

by arrival time. Implementing this algorithm is also trivial.

The Round Robin (RR) algorithm is based on the expectation that the

www.manaraa.com

33

time intervals during which pages are referenced are reasonably close

to an average time length. If this is true, the page with the lowest

reference probability Is the one in the frame least recently selected.

Implementing the RR is very simple by the use of an "own" variable that

points to the frame last cleared. When the algorithm is called, it

cycles through the frame table starting from where it left off last

time until it finds a frame that is in use.

Experiments and measurements have shown that the performance of

the FIFO and the RR replacement policies are not good [17].

The Least Recently Used (LRU) algorithm recognizes the fact that

some pages are used for longer periods of time than others. For example,

a page containing part of a main program or the global data of a program

usually has a longer lifetime than a procedure page or page of temporary

data. Therefore, the LRU algorithm is based on the assumption that the

probability of referencing a particular page is inversely proportional

to the time interval between the last reference to the page and the .

present moment. The page selected by the LRU algorithm is then the

least recently referenced page. Numerous studies pointed out the

superiority of the LRU algorithm, one of which will now be reviewed.

An interesting study that was done at Princeton University in 1968

provides experimental data on the behavior of programs in a paging

environment [19]. The study discussed the problems of paging systems

in general and the problem of poor object program behavior in a multi­

programming environment in particular. Specifically, the frequency of

page turning (transferring pages in and out of main memory) necessary

www.manaraa.com

34

for the execution of a program never wholly in main memory, tends to

degrade the system performance by introducing an excessive amount of

input/output interference. Although the study dealt with different

aspects that might affect paging system performance such as page size,

number of pages kept in main memory at one time and page replacement

algorithms, our concern is with the part that studied the effect of

different replacement policies on program behavior. The experiment was

designed for the study of programs written for the IBM system/360

model 50 computer and organized to operate under the operating system

in use at Princeton University at that time. Each program studied was

used as input to an interpreter written for the mentioned machine.

The paging behavior of the interpreted program was traced by recording

an identification of the new page, determining whether it was a data

or an instruction page, and determining the number of instructions

executed since the last page request. Simulations were carried out to

determine the paging characteristics of the programs when run under

different page replacement algorithms. Specifically, the study com­

pared the page fault frequency introduced by the LRU algorithm and by

the Belady Optimum Replacement (BOR) algorithm. The BOR is based on a

prior knowledge of the entire sequence in which pages are used in the

execution of a program [20]. The algorithm is considered the best

possible replacement algorithm, but it is totally impractical. Thus,

the study selected the BOR as a means of comparing the performance of

various practical algorithms with the best possible one.

The study concluded that page turning is a substantial problem in

www.manaraa.com

35

a demand paging system, and that a least recently used replacement

algorithm yields a performance within about 30% of that optimum page

replacement sequence. The authors also remarked that with sufficient

main memory, the LRU algorithm is an appropriate replacement algorithm

in most cases. The authors also mentioned that good agreement had been

observed with the study made by Belady under different conditions

[19, 20].

Two algorithms that approximate the LRU are the Least Frequently

Used (LFU) and the MULTICS [17, 21]. The LFU algorithm counts the

number of references to a page and selects the page that had been least

frequently used. However, the overhead in the LFU case is very high,

since the whole page table has to be searched every time a page fault

occurs.

The MULT ICS algorithm (also known as the second chance or the

clock algorithm) is a much better approximation to the LRU than the LFU.

Its overhead is much less and provides better performance than the LFU.

However, the MULT ICS is still an approximation and incurs an overhead

that can be considered high [17, 19].

Despite the near full agreement that the LRU is the best practical

replacement algorithm, it was believed that the exact implementation of

the LRU is impractical. A common phrase in the literature was that

exact implementation of the LRU is not feasible. For instance, in a

1978 book [17], the author said:

An exact implementation of an LRU algorithm is not
feasible because of its tremendous overhead on current
hardware. It would be necessary to record the time of

www.manaraa.com

36

reference ever time a page is referenced because the operat­
ing system has no way of knowing which reference to a page
is the last.

Well, we can say that this is no longer true. A hardware sub-

module was designed and built to challenge the above statement. The

submodule had the objective of exact implementation of the LRU algorithm,

and proved to be successful at a very low cost. The overhead in terms

of CPU time is possibly less than that of any existing replacement

algorithms.

There are two reasons that made possible the accomplishing of

this:

(1) The availability of low cost, powerful microprocessors and

hardware in general, and

(2) Parallel processing within a support module that works with

minimum interference with the main system.

The design and operation of support module will now be given in

detai1.

Exact LRU Support Module Organization

The basic idea in the design is to use a number of submodules that

work simultaneously within an LRU module. Each submodule contains a

microprocessor and is responsible for finding the least recently used

page frame in a certain main memory area. If we divide main memory Into

'n' equal areas, then each submodule would be assigned one such area.

Only the part of the address (on main memory bus) that corresponds

to the frame number is the concern of the module. The In-page address

is of no importance and can be ignored because we are dealing with pages.

www.manaraa.com

37

not locations. The frame address stream is first filtered out to sup­

press all consecutive references to the same page except the first one.

This means that only the first in a sequence of references to a page

is to be considered. It is only necessary to compare the relative

reference times to different pages rather than the absolute reference

times. This filtering is also important to reduce the arrival rate

at the module and to minimize possible interference with the main

system as will be explained later. An address distribution circuit,

mainly a decoder, is to be used to route the filtered stream to sub-

modules according to the main memory areas they service. A TIMER is

incremented every time a filtered frame number is released from the

filtering circuit. The TIMER serves all submodules, so only one timer

is needed for the whole module. Figure 6 shows the block diagram of

the support module. A frame address stream arriving at a submodule

will be called an area stream.

A supervisor microprocessor for the whole module is responsible

for finding the overall LRU page frame from among the LRU area pages

produced by the submodules. The supervisor also has to communicate

and present results to the main system. A more detailed discussion

about the supervisor's functions will be given later in this chapter.

Submodule Organization

A submodule designed to handle an area stream contains basically a

microprocessor, a read/write or Random Access Memory (RAM), and Read

Only Memory (ROM). The organization of the submodule is shown in Figure

7. The RAM is used to record the time a page frame is referenced.

www.manaraa.com

c

SUBMOOULE
1

S
c

OUTPUT
LATCHES 1
T=

MAIN M EMORY BUS

LI
ADDRESS
FILTER

n
1£

ADDRESS
DISTRIBUTION

TIMER

i£
SUPERVISOR
SUBMODULE

SUBMODULE
N

>

OUTPUl
LATCHE :s N

LRU PAGE
V FRAME

Figure 6. Block diagram of the LRU module

www.manaraa.com

i

k

a

(2

1

i£

RAM

7T

BUFFERS

IE
TIMER

ARBITRATION « R A M _
'SELECT

DECODE
AND
CONTROL
LOGIC

/ CONTROL

CO

C ADDR ESS BUS
\ /

g

3
CO

c
ROM

IZ
DATA BUS

Si
MC 68000
MICROPROCESSOR

OUTPUT
LATCHES

LRU SUBMODULE

Figure 7. LRU submodule organization

www.manaraa.com

40

while the ROM contains the routine to be executed by the microprocessor.

For each page frame in the main memory assigned to the submodule, there

is a certain set of locations in the RAM that contains its last time

of reference. These locations will be called a Time Record (TR).

Every time a frame address arrives at the submodule, the contents of

the TIMER are copied into the TR corresponding to the frame address.

The frame address itself is used to address the RAM directly to write

the TIMER into the frame's TR in RAM.

The microprocessor reads its LRU routine from the ROM without inter­

ference from the main system. Three-state buffers are used such that

the microprocessor can access its ROM freely at any time without having

to interfere with the outside world. The only time interference has to

be considered is when the microprocessor wants to access the RAM. An

arbitration circuit is used to arbitrate between a time write operation

and a microprocessor RAM read cycle.

The submodule is designed to handle 128 main memory page frames.

If we assume that the main memory has 1024 page frames, then it can

be seen as composed of eight equal areas of 128 frames each. However,

the design can easily be modified to assign the submodule different

number of frames other than 128. It is much more convenient to divide

main memory into a number of areas that is a power of 2, and at the

same time assign a submodule a number of frames that is also a power of

2. This could result in a much easier and more efficient design. For

instance, a submodule can take care of 64, 128, 256, or 512 frames with

different module response times. We chose to assign 128 frames to the

www.manaraa.com

41

submodule and check the response tinne. As will be discussed later in

the next chapter, the response time obtained with 128 frames/submodule

is quite acceptable and doubling the number of frames should result

also in an acceptable response time.

Detailed Submodule Design

As shown in Figure 7, both the data and address buses are buffered

to control accesses to the RAM. Since the RAM Is the source of poten­

tial conflicts between the main system (writing a time record) and the

submodule's microprocessor (reading a time record), its access is con­

trolled by a simple arbitration circuit. The only case a wait signal

is generated by the arbitration circuit and sent to the main system is

when the microprocessor is in the process of reading the RAM and a

filtered address arrives at the submodule to initiate a time write cycle

into the RAM. As discussed later, the probability of this event can be

reduced to about 1%. Although our intention was to build and test a

submodule, it was also necessary to design and build some extra hard­

ware. For instance, an address generation module capable of producing

some prespecified sequences of addresses is necessary to enable testing

the submodule. Also, even though only one TIMER circuit is needed for

the whole module, it is essential to have a TIMER circuit to test the

submodule, in the following section, a detailed description of the

major elements in the submodule is given.

www.manaraa.com

42

The microprocessor

Motorola's MC68000 [22] was selected as the submodule's micro­

processor for the following reasons:

(1) It is a fast microprocessor that can operate at high clock

rate (up to 8 MHZ).

(2) Its address space is very large; in fact, it is much larger

than is needed. This allows the use of some address lines

for direct control with virtually no decoding, thus simplify­

ing the design and reducing the cost.

(3) Most instructions can handle long words (32 bits). This

results in a simpler and more efficient routine, especially

since the TIMER is chosen to be 32 bits.

(4) Its data bus is 16 bits wide, which means fewer references to

the RAM than would be the case if an 8 bit micro were

selected. Thus, fewer potential conflicts with main system

are to be expected.

(5) It is possible to utilize the bus error feature provided by

the MC68000 to further reduce the possibility of interference

with the main system activities. This will be explained in

detail in the next chapter.

Although the MC68000 has many other areas of strength and superior­

ity, only subsets of its capabilities were actually used in the design.

For example, it has an advanced interrupt handling scheme that uses

seven levels or priority; however, the whole interrupt system had not

been utilized in the design. The interrupt system might be useful in

www.manaraa.com

43

designing the supervisor submodule as a means of interaction with the

main system.

Arbitration

A simple arbitration circuit is employed to organize and control

accesses to the RAM. The arbitration circuit receives requests from

the microprocessor to perform RAM read cycles and receives time write

requests whenever a valid frame address arrives to the submodule. The

request that arrives first is granted the access to the RAM. The arbi­

tration circuit is a simple R-S latch built of fast NAND gates, namely

SN74S00 integrated circuits. It must be mentioned that the main system

does not actually make requests to access the RAM In the submodule but

tries to reference a main memory frame that is assigned to the submodule.

The request received by the arbitration circuit is generated within the

module and can be interpreted as a request to record the reference time

from the TIMER into the frames' TR in the submodule's RAM. Thus, the

main system is not actually aware of what is taking place in the sup­

port module, but it sometimes may have to wait until the time recording

process is completed. Thus, if main memory control logic is employed

that is capable of causing a main CPU to wait until the addressed area

is free, the resulting wait signal must be logically ORed with the wait

signal generated by the support module.

Random Access Memory (RAM)

The read/write memory or Random Access Memory (RAM) represents a

somewhat critical part of submodule design for the following reasons:

www.manaraa.com

44

(1) The RAM is the only part of the submodule that can cause

access conflicts between the microprocessor (trying to read)

and the time recording process (trying to write).

(2) The addressing space as seen by the microprocessor is dif­

ferent from that seen by the time recording scheme. This

will shortly be explained.

(3) Critical timing problems result because arbitration should

be as fast as possible to allow both systems to work at

their maximum speed. At the same time, timing specifications

of the RAM chips must be met to ensure correct operation.

Also, with the existence of two sets of address and data

buffers, some other specifications had to be taken into

account to enable and disable the buffers at appropriate

times.

A set of 6116-4 RAM chips was selected for the read-write memory.

They have an access time of 200 ns. Although the 6116 chips are intern­

ally organized as 2Kx8 bits, only 128 bytes/chip were actually used.

The reason is the unavailability of wider word chips with fewer words.

The RAM is organized as 128 records, each having 32 bits. Hence,

four 6ll6 chips are needed. This is consistent with assigning 128 main

memory frames to the submodule.

Since the MC68000 is a l6-bit microprocessor, each Time Record (TR)

has to be read from memory In two read cycles. This is not the case

when a time write process is to be performed since it is possible to

write a whole TR in only one write cycle (the microprocessor is not

www.manaraa.com

45

involved here). This has been achieved in the design by using only 7

address lines from the main system, whereas 8 address lines from the

MC68000 address have to be utilized to address the RAM. The least

significant bit (A^) of the MC68000 is used to select either the lower

16 bits (A^ = 0) or the higher 16 bits (A^ = l) of a time record. Note

that Aq of the MC68000 doesn't appear on the address bus but is used

internally in the case of byte instructions. All the instructions used

are either word or long word instructions.

As mentioned earlier, an address stream generation module was

built to allow testing the LRU submodule. The former employed another

MC68000 microprocessor. To differentiate between the signal lines

associated with the submodules MC68000 and those of the test module, we

will affix letter P (for processor) to the submodule lines and a T (for

test) to the test module lines.

Addressing the four RAM chips is either done using Agp- Agp of the

submodule or A^^-A^^ of the test module. Figure 8 shows the RAM

addressing mechanism, as well as major control signals that control

RAM operation. The control part is discussed in detail later in this

chapter.

To meet the timing requirements, it was found essential to do the

arbitration as early as possible in any RAM read or time write cycle.

This is achieved by using A^^p as a RAM read request signal for the LRU

submodule while A^^j 'S used as the time write request signal. These

signals become valid ̂ clock period in advance of the actual read or

write cycle starts since the address lines in the MC68000 are activated

www.manaraa.com

BUFFER

TO - T7

MC 68000

WAIT T

Figure 8. RAM addressing mechanism

M
T8 - T15 T16 - T23 T24 - T31

ENABLE RAM
TO - TI5

ENABLE RAM
T16 - T31

ARBITRATION AND
CONTROL LOGIC

BUFFER

SUBMODULE
MC 68000

AIP AND A13P

WAIT P

ON

www.manaraa.com

47

Y clock period before the Address Strobe (AS) signal is activated. Of

course the use of A^2j and A^^p had to be taken into consideration when

the programs were designed.

Since the RAM can be accessed from two different sources, a set

of 3-state address and data buffers are needed on each side. However,

it was essential to include two sets of data buffers (16 bits each) at

the LRU submodule side because use of only one 16-bit buffer would

short circuit some of the TIMER buffer output lines. This can be under­

stood from Figure 9, which indicates that each TIMER buffer output line

goes to one RAM chip and mandates that the same must apply to the other

side to avoid short circuits.

The existence of two sets of buffers requires exclusive enabling,

that is, one set is enabled at a time. This is taken care of by the

arbitration circuit which always has one of its outputs active at a

time. If no request is made to access the RAM, both buffers have to be

disabled. It must be mentioned that bidirectional buffers are used at

the submodule's side to allow the microprocessor to initialize the time

records at the beginning of operation.

Read Only Memory (ROM)

The ROM stores the routine designed to implement the exact LRU

algorithm and is considered private to the submodule. This part of the

circuit is designed such that the microprocessor can access the ROM at

any time freely without any kind of interference from the outside world.

This means that a time record can be written into the RAM while the

microprocessor is fetching or executing instructions that do not require

www.manaraa.com

D8 - DIS

DO - DIS

SUBMODULE
DATA BUS

DO - 07

BUFFER
00 - 07

BUFFER
DO - 07

BUFFER
08 - 015

BUFFER
08 - 015

TIMER
T8 - T1S

TIMER
T16 - T23

TIMER
TO - T7

TIMER
T24 - T31

BUFFER
T8 - T15

BUFFER
TO - T7

BUFFER
T16 - T23

BUFFER
T24 - T31

RAM
T8 - T15

RAM
T16 - T23

RAM
TO - T7

RAM
T24 - T31

Figure 9. RAM data buffering

www.manaraa.com

49

RAM accesses. Thus, the microprocessor can operate at full speed as

long as it is not accessing the RAM while a time record is being

written. The existence of data and address buffers permits direct

connection of the address and data buses to the ROM. All control

signals needed to control the ROM operation are generated directly

from the microprocessor's address and control lines.

The TIMER

Although only one TIMER is required to serve all submodules, it

was necessary to build one to allow testing the submodule. The TIMER

was chosen to be a 32 binary counter that is incremented every time a

valid address is released from the filtering circuit. The SN74393 chips

are utilized to build the TIMER. Each chip can be configured to form

an 8-bit binary counter; therefore, four chips are needed to build the

32-bit counter.

Since the arrival of a valid frame address to the module implies

incrementing the TIMER and writing it into the RAM, the stability of

all TIMER bits must be ensured during the write operation. This is

accomplished by performing the increment operation immediately after

the write operation is completed. The rising edge of the signal that

enables the TIMER buffers (active low signal) is used to increment the

TIMER. However, the TIMER needs a maximum of 240 ns to stabilize all

32 bits, which means that 240 ns must elapse between two consecutive

time write operations to ensure correctness. It is possible to solve

this problem by utilizing a single shot or monostable multivibrator that

has a period of slightly over 240 ns (say 250 ns). The monostable

www.manaraa.com

50

is driven by the TIMER increment signal and its output is used to in­

hibit any successive signal that arrives during the 250 ns period.

Although this technique allows two time records to have the same

value, it should not be considered a problem for two reasons:

(1) The probability of switching from one page frame to another

after just one reference is very small (locality of reference)

[17].

(2) If a page is to be selected as the LRU from two pages that

have the same reference time, it does not make much differ­

ence which one is selected. This is because an output is

produced by the module, say every 2-3 ms which makes 250 ns

negligible. In fact, the 250 ns can be approximated to zero

with an error of 1/800 at most.

It is also possible with faster chips than the SN7^393 to avoid the

whole stability issue, provided that the main system is not too fast.

The SN74393 was good enough for the experiments since the address

generator speed was not too fast for the selected chips and two con­

secutive increment signals were more than 250 ns apart. Thus, there

was no need for the monostable in our circuit although it is trivial

to employ it. Figure 10 shows the TIMER and its buffers while Figure 11

shows a timing diagram of a time recording and TIMER incrementing cycle.

Notice that the buffers in Figure 10 are built of SN74LS244 chips which

are unidirectional.

www.manaraa.com

TIME WRITE
REQUEST

*-

of

INC.
TIMER

ARBITER

18161412 9 7 5 3^

SN74LS244

2 4 6 8 11131517

SN74LS244

5 61311109 8

SN74393 SN74393

Figure 10. The TIMER and its buffering

SN74LS244 SN74LS244

SN74393 SN74393

vn

www.manaraa.com

52

TIME WRITE
REQUEST

IARBITRATION TIME

OK WRITE
ENABLE BUFFERS

VALID ADDRESS
STROBE

INC. TIMER

- ACTUAL WRITE TIME —|

Figure 11. Time recording timing diagram

www.manaraa.com

53

Decoding and control logic

Low power Schottky TTL chips are used throughout the submodule

except for the arbitration circuit. This makes it possible to directly

load the MC68000 microprocessor pins with more than one load. Actually,

some pins are loaded with up to five loads directly without buffering.

Moreover, as is well-known, Schottky logic is superior in handling un­

wanted noise signals because of the existence of a clamping diode at

each input.

Since normal Schottky chips are faster than low power Schottky

chips, the arbitration circuit which has to be very fast utilized

normal Shottky chips.

Output latches

The output produced by a submodule is composed basically of two

parts. The first part is the LRU page frame address within the main

memory area assigned to the submodule. In our case, this part needs

only 7 bits; therefore, an 8-bit output latch is enough to hold it.

The other part of the output is the time of the last reference to the

LRU frame; i.e., the time record of the output LRU frame. Since a time

record is 32 bits wide, four 8-bit latches are needed to hold the time

part. Thus, a total of five 8-bit latches is needed to hold a sub-

module's output. Intel's 8212 chips are used as output latches and

are connected to the data bus through two SN74LS244 buffer chips. The

reason why the time record is to be dispatched is that the supervisor

microprocessor needs to compare the time records of different LRU frames

www.manaraa.com

54

produced by different submodules iri order to be able to find out the

overall LRU page frame in the whole main memory.

Now, having described all major parts of the LRU submodule, a

description of the address stream generation module will follow.

Address Stream Generation Module

The function of the address stream generation module is to simu­

late the main system address stream as well as the address filtering and

distribution circuits. Thus, all that is needed is to generate a pre-

specified address stream that can be directed to the LRU submodule to

facilitate testing and evaluating the submodule.

An MC68000 microprocessor is used to simulate the supported main

system central processing unit(s) (CPUs). Two 2716 ROM chips, address

buffering chip, and some LS chips are used along with the MC68000 to

form the address generation module.

The basic idea is to have the microprocessor execute a very simple

routine that is designed to produce some prespecified address sequence

on the test module's address bus. Since only seven address lines are

to be directed to the LRU submodule, it is necessary to differentiate

between ROM references and addresses that should be directed to the

submodule. This is done by assigning a lower address space to the ROM

and higher one to the generated stream. Address line 12 (A^gy) is used

to separate the two areas, hence A^gy^1 means the address on the bus is

to be directed to the submodule. Address lines A^y through A^ are used

to represent a page frame address whenever A^gy is high. The block

diagram of the test circuit is shown in Figure 12.

www.manaraa.com

55

LRU
SUBMODULE
AND
ARBITRATION
CIRCUIT

ADDRESS BUS

C DATA BUS

A12T

VALID
ADDRESS'

CONTROL BUS
WAIT

BUFFER

CONTROL
LOGIC

ROM

MC 68000
MICROPROCESSOR

Figure 12. Address generation circuit block diagram

www.manaraa.com

"68000"
9 ADDRESS GENERATION

ORG OOOH
HEX 0000,2300
HEX 000,0400
ORG 400H
MOVE #0700H,SR
MOVE.L #1100H,A2

INIT MOVE.L #1OOOH,AO
MOVE.W #5,D2
MOVE.W #2,D3
MOVE.W #1,D4
MOVE.W #8,D5

SEGM1 MOVE.L #1030H,A1
LOOPl MOVE.W [AO]+,DO

CMPA.W A0,A1
BNE LOOPl
ADD #02H,A0

L00P2 MOVE.W [AO]+,DO
CMPA.W A0,A2
BNE L00P2
MOVE.L #1OOOH,AO
DBNE D2,LOOPl

SEGM2 MOVE.L #1072H,A1
L00P3 MOVE.W [AO]+,DO

CMPA.W A0,A1
BNE L00P3
ADD #02H,A0

L00P4 MOVE.W [AO]+,DO

CMPA.W A0,A2
BNE L00P4
MOVE.L #1OOOH,AO
DBNE D3,LOOP3

DEGM3 MOVE.L #10F8H,A4
MOVE.L #1040H,A3
MOVE.L #1020H,A1

LOOPS MOVE.W [AO]+,DO
CMPA.W A0,A1
BNE LOOPS
ADD #02H,A0

L00P6 MOVE.W [A0l+,D0
CMPA.W AO, A3
BNE L00P6
ADD #02H,A0

LOOP? MOVE.W [AO]+,DO
CMPA.W AO, A4
BNE LOOP?
ADD #02H,A0

Figure 13- Address générât

56

R0UTINE"ADDGEN4".

;ALL ADDRESSES ARE HEX

; INITIALIZE STATUS REGISTER.

; "SEGMENT!

;SKIP 1030.

; EXECUTED 5 TIMES ?
; "SEGMENT2"

;SKIP 1072.

; EXECUTED 2 TIMES ?
; "SEGMENTS"

;SKIP 1020.

;SKIP 1040.

;SKIP 10F8

ion routine "ADDGEN4"

www.manaraa.com

LOOPS MOVE.W [AO]+,DO
CMPA.W A0,A2
BNE LOOPS
HOVE.L #1000H,A0
DBNE Di», LOOPS

SEGM4 MOVE.L #1016H,A1
L00P9 MOVE.W [AO]+,DO

CMPA.W A0,A1
BNE LOOPS
ADD #2H,A0

LOOP10 MOVE.W [AO]+,DO
CMPA.W A0,A2
BNE LOOP10
MOVE.L #lO0OH,AO
DBNE DS,LOOPS

SEGM5 MOVE.L #10C2H,A1
LOOPl1 MOVE.W [A0]+,D0

CMPA.W A0,A1
BNE LOOPl1
ADD #2H,A0

LOOP12 MOVE.W [A0]+,D0
CMPA.W A0,A2
BNE LOOP12
MOVE.L #IOOOH,AO
BRA • INIT

57

;D0 NOT REPEAT.
; "SEGMENTA"

;SKIP 1016.

; EXECUTED 8 TIMES ?
; "SEGMENTS".

;SKIP 10C2.

;D0 NOT REPEAT SEGMENTS-

; REPEAT ALL SEGMENTS.

Figure 13. (Continued)

www.manaraa.com

58

A set of simple programs were written to generate different sequences

of addresses that were intended to test the response of the LRU sub-

module. A sample of these programs is shown in Figure 13. Since the

address filtering and distribution circuits mentioned earlier have not

really been built, it has been found necessary to simulate different

arrival rates at the submodule in the design of the address generation

circuit programs. The No Operation (NOP) instructions are used to sub­

stitute for filtered-out addresses. By controlling the number of the

NOP instructions in an address generation loop, it is possible to con­

trol the arrival rate at the submodule. It is worth mentioning that in

an actual situation, it is not expected that a valid address will arrive

at the submodule every time an address is put on the main system's bus.

The reason is that it is very unlikely that the main system will always

switch from page to page after only one reference (locality of reference)

[17]. Even if this happens, it is expected that, on the average, only

1/n of the references will be directed to a certain submodule, where n

is the number of submodules in the LRU module. Thus, it is practical

to assume that the arrival rate at any submodule will be, on the average,

less than 1/n of the whole address stream rate on the main system's bus.

Detailed Circuit Diagram

The detailed circuit diagram of the whole circuit including both

the LRU submodule and the address generation circuit is shown in Figure

14, and a photograph of the built circuits is shown in Figure 15. Notice

that the circuits shown in the photograph include the LRU submodule, the

TIMER, the clock generator, the reset circuit, and the address generation

www.manaraa.com

Figure 14. Detailed diagram of the LRU submodule and the address
generation module

www.manaraa.com

60

A
vcc

jéj.
16 53 14 49

CLOCK O—SUL

I
15

17 HSET

IŜ EsfT

MC 68000

o VVS-̂ Z

0.?-2'̂ VS/w|ZI

12
13
22
231
24[TPL
25i

. •- : •

I

2
1

64
63 —\

54

29

40

10 9 6 -

fS

A, 2

}18 20 b.
10 — —

11 — —

13 — —

14 — —

15 — —

16 — —

17

2716

AIT
A2T
A3T
A4T
AST

ML

2

i i

'3 01112

MT

m

ai2T;

WT

JSX

1
3 ,
5 g 4

% 6

"0"

A121

A
74LS74 / \-

www.manaraa.com

www.manaraa.com

r

&

lElIlB
"1 An oi «4 m W

si 74LS04.

o W ̂ ro

:, 5^

*®OW N

si 74LS00

Uiq,

FT

(0 ^ m w

j

BI5l5ISIS(q
w S^ôvTÛT

g] 74LS04
«•J ro Q CD o\ ro

S

grima

—T"* /LS240 g]
L s

g

_C

1

_J p p
s :
4=H

«s4

P , 1 1
P

_r
I

I' sK

V l l l l l l l l l t f

I M i l l

6116 5
ro o

I

T « - 1 5 B M I I I I I I B

m

www.manaraa.com

www.manaraa.com

2 * 16

18 20

îT or

u> 14

(Ag - Ag)P

TIME

74LS244

18161412 9 7 5 3,

74LS244

2 4 6 8 11131517

_r

IL
74393 1 Li

n

>1

3 4 5 6131110 9 8

74393

T0:15

www.manaraa.com

www.manaraa.com

• i "

XTAL

RECORD O-
READ

00

v>
TIME
WRITE

A13 ROM A4 RAM READ ROM
SELECT SEL

2ND
OUTPUT

WORD
ROM
SEL
1ST
WORD

A14

VCCo- -
2̂9 22

MC68000

v>
HSYNT 47

A2(I

R/W
RAMR/W

-g
3.3k

VCC

OfK

3.3k

49 53
ioi

www.manaraa.com

www.manaraa.com

nfn N^snniiiiiiIiiliTTTT
i-aa ro w

0 74LS00

Z! 00

[g 74LS08

READ IS

2ND WORD

RESET 00
8IKQB!BSZlKw2-<Nw*in

ffifff

a o ̂ wr\> so ui4>»ro«̂

74LS08 (s

00 (71 CO

74LS04 74LS08

OUT TIME

£ OUT TIME LOW

OUT TIME HIGH

8212

rmîTTî 1 1 1 1 1 1 1 1
W. TIME HIGH W. TIME LOW

PAGE NUMBER .TIME OF LAST REFERENCE HIGH TIME OF LAST REFERENCE LOW

www.manaraa.com
f I "rrr:.-*:! i

www.manaraa.com

o-2s2Lvvû

MC 68000

12
13
22
23̂
24|lPL
25J

S

54

29

40

10 9 6

g

"is

ait

|Â3T
4a4T

 ̂*' 5 o 6
9 ^ 8
U II

1 13112112

KTT

(A^ - A»r

MS]

MCT:
WT

J5T

5 8 4
5 6

n 10
Ri

a12t
a12t
FIST

AST

R/W

74LS74

?

-PPTT

CLOCK

am

www.manaraa.com

www.manaraa.com

1 2
3 *
5 ° 6
9
11 10
13 012

STT

R5l

i i .
s 6

"IB"

XT

(AT - A7)T

H.C

2 01 18
4 16
6 O 14
8 % 12
II
13

EN 9
7

15 5
'̂ 1 IGS

A12T

A12T
FIST

/\

r—5|ij-

16l

::'L

AST

R/W

EST

r

:;1

• %/ ./M -

/%;
lATT

(A, - A,)T

(AT - A7)T

NX

i
I: ̂ "
\°ini

13

HS7HT

41:

READ
ROM

. •":
J

74LS244

1

74LS244 :3

1 74393

Q

1 74393

£1

INC. COUNTER

: • :: •-•:fi®,v;Ép-kE;SaSài4^

-•, .-^ • •>: ,< .vi.-
M

www.manaraa.com

www.manaraa.com

'<c
I

- , ;]

.COUNTER

(Aj - Ag)?

TIME

74LS244

1

:] 18161412 9 7 5 3 ̂

74LS244

2 8

7 74393

19
11131517

3n

3 4 5 6131110 9 8

I 74393

ENABLE TIME BUFF

IT ENABLE RAM
ADDRESS BUFF

«
4

18 2
16 4
14 « 6
12 S 8
9 3 11
7 S 13-1

3, 1̂ 7

AS*.

16

*1.—

mm
JSSL

A12T

e ec

/ \

Z.-Z

2.:

www.manaraa.com

www.manaraa.com

HC68000

HSYNT

RAHR/U
12 BR
13 BBKCK
23
24JIPL
25

15 CLK

REC. READ

TO OTACK

ASP

TIME WRITE

RAN SELECT

TIŒ WUTE (H)

TO OTACK

www.manaraa.com

www.manaraa.com

H m SKKwFS «»

• \ *l • ' • •
Atr#

HALT -j }
RESET 00

5!*gBIS838SS^N(„#m

wmm
â ïïsm vTBTR

i IM44' 74LS04 g| 74LS08 M ^ LS244
•*

H)

mm
rn f̂

«.cr

a## I I I I I i M
W. TIME HIGH

M i l l

Km
m m m ^ i

PAQE NUMBER .TIME OF LAST REFERENCE HIGH

mm
m#

TIME OF LAS

www.manaraa.com

www.manaraa.com

Figure 15. A photograph of the built circuits

www.manaraa.com

oc ii90c'i0c';0 ioaooc • ::ooooo

www.manaraa.com

63

module. If the submodule were assembled on a separate printed circuit

board, it should be possible to use a 5"x5" board. The whole LRU

module could be assembled to occupy 6"x6"xlO" at most. This means that

it can nicely fit inside a modern disk drive assembly with no need for

much larger space.

The LRU Routine

The LRU routine is designed to be executed by the submodule's

MC68000 microprocessor. It has as an objective finding out the LRU

page frame in the main memory area assigned to the submodule. The

routine is written such that the number of references to the RAM is

minimum. This is necessary to reduce the probability of a RAM access

conflict as discussed before. By copying a time record to an internal

register, it is easy to use the register in all comparison operations

needed by the routine without having to reference the RAM again. A

flow chart of the LRU routine is shown in Figure 16.

It has been found necessary to write more than one LRU routine to

compare the performance of the submodule as the number of records stored

inside the microprocessor varies. Therefore, three LRU routines,

ROUT I NE1, R0UTINE2, and ROUTINES were designed to work with different

number of internally kept records. ROUT I NE1 keeps only the record of

the LRU page frame. ROUT INE2 keeps the LRU two records inside the

microprocessor, while ROUTINE) keeps the LRU three records. R0UTINE3

is shown in Figure 17» while ROUTINEl and R0UTINE2 are given in

Appendices A and B. The following discussion describes ROUTINE); it

also applies to ROUTINEl and R0UTINE2 because of the similarity

www.manaraa.com

64

START

INITIALIZE

KEEP FIRST
N RECORDS

READ A
RECORD

ALL 128 >
RECORDS
SEARCHED/

OLDER THANXNO
ANY STORED/"
V ONE ? X

YES YES

CHECK VALIDITY
OF LRU RECORDS

REPLACE MOST
RECENT RECORD
WITH NEW ONE

^ ANY \
VALID RECORD

OUTPUT
OLDEST RECORD

YES

Figure 16. Flow chart of LRU routine

www.manaraa.com

65

•68000'

INIT

LI

L2

L3

L4

ORG OOOOH
HEX 000,2300,000,0400
HEX 000,0000,000,OEOO
ORG 400H
MOVE.L #700H,SR INITIALIZE STATUS REGISTER.
MOVE.L #0,A0 CLEAR AO THRU A2.
MOVE.L #0,A1
MOVE.L #0,A2
MOVE.L #22000H,A6 LOAD A6 WITH HIGHEST ADDRESS+4.
MOVE.L #22200H,A5 LOAD A5 WITH LOWEST ADDRESS.
CLR.L D7 D7 WILL BE USED TO CLEAR ALL
MOVE.L 0

1 128 RECORDS.
CMPA.L A6,A5 CLEAR ALL 128 RECORDS.

BHI LI
MOVE.L #2200H,A5 REINITIALIZE A5&A6 FOR READ.
MOVE.L #2000H,A6
MOVE.L -[A5],D0 READ FIRST THREE RECORDS AND
MOVE.W A5,A0 ORDER THEM.
MOVE.L -[A5],D7 DO SHOULD HOLD THE OLDEST RECORD
CMP.L D0,D7 WITH ITS ADDRESS IN AO.
BHI L2 D1 SAl SHOULD HOLD THE NEXT OLDEST
MOVE.L D0,D1 RECORD AND ITS ADDRESS RESPECTIVELY
MOVE.W A0,A1 'D2&A2 SHOULD HOLD THE LAST RECORD
MOVE.L D7,D0 AND ITS ADDRESS RESPECTIVELY.
MOVE.W A5,A0
BRA L3
MOVE.L D7,D1
MOVE.W A5,A1
MOVE.L -[A5],D7
CMP.L D0,D7
BHI L4
MOVE.L D1,D2
MOVE.W A1,A2
MOVE.L D0,D1
MOVE.W A0,A1
MOVE.L D7,D0
MOVE.W A5,A0
BRA NSRCH
CMP.L D1,D7
BHI L5
MOVE.L D1,02
MOVE.W A1 ,A2
MOVE.L D7,D1
MOVE.W A5,A1
BRA NSRCH

Figure 17. Exact LRU program "ROUTINES"

www.manaraa.com

66

L5 MOVE.L D7,D2
MOVE.W A5,A2

NSRCH MOVE.L -[A5],D7 READ A TIME RECORD INTO D7
COMP.L D2,D7 IF NOT OLDER THAN THE ONE IN D2
BHI TSTEND IGNORE IT.
CMP.L D1,D7 IT IS OLDER
BHI L6 REORDER THE LIST AS ABOVE
CMP.L D0,D7 DISCARD D2&A2
BHI L7
MOVE.L D1,D2
MOVE.W A1,A2
MOVE.L D0,D1
MOVE.W AO, Al
MOVE.L D7,D0
MOVE.W A5,A0
BRA TSTEND

L6 MOVE.L D7,D2
MOVE.W A5,A2
BRA TSTEND

L7 MOVE.L D1,D2
MOVE.W A1,A2
MOVE.L D7,D1
MOVE.W A5,A1

TSTEND COMPA A5.A6 ALL 128 RECORDS SEARCHED?
BNE NSRCH IF NOT GO BACK TO NSRCH.

OUTPUT CMP.L [AO],DO CHECK VALIDITY OF DO.
BNE L8 IF NOT VALID GO TO L8
MOVE.L A0,D4 IT IS VALID.
LSR.L #1,D4 MAP ADDRESS BACK TO 1NPUT
MOVE.W D4,4000H ADDRESS AREA AND OUTPUT IT.
MOVE.L D0,4010H OUTPUT ITS TIME RECORD.
BRA ENDOUT

L8 CMP.L [A1],D1 ;CHEK VALIDITY OF D1 AND OUTPUT IF
BNE L9 ;VALID.IF NOT GO TO L9.
MOVE.L Al ,#4
LSR.L #1,D4
MOVE.W D4,4000H
MOVE.L 01,4010H
BRA ENDOUT

L9 CMP.L [A2],D2 ; CHECK VALIDITY OF DO AND OUTPUT IF
BNE ENDOUT ;VAL ID. IF NOT VALID NO OUTPUT IS
MOVE.L A2,D4 ;PRODUCED.
LSR #1,D4
MOVE.W D4,4000H
MOVE.L D2,4010H

ENOOUT MOVE.W #2200H,A5 ; REINITIALIZE Ag.
BRA SEARCH ;START A NEW SEARCH

Figure 17- (Continued)

www.manaraa.com

67

ORG
BUSERR MOVE.L

MOVE.L
RTE

ORG
ADDERR MOVE.L

MOVE.L
RTE

ODOOH
#0FFFFFFFFH,i»010H ;BUS ERROR HANDLER.
#0400H,0CH[A7]

OEOOH
#0FFFFFFFFH,4010H ;ADDRESS ERROR HANDLER.
#0400H,0CH[A7]

Figure 17- (Continued)

www.manaraa.com

68

between all three routines except for the number of internal!y stored

records.

The routine starts by initializing the status register to the user

mode and an interrupt level of seven. A zero is moved to address

registers AO, A1, and A2 in a long word instruction in order to clear

the most significant bits in particular. This is necessary to avoid

using long word instructions thereafter where word instructions can be

used to reduce the execution time. Since only address lines AlP through

A9T are used to address the RAM when A13P is asserted, the address

space occupied by all 128 time records is 2000 through 21 FF in hexa­

decimal. However, because of the availability of very large address

space, address line A17P is used to differentiate between RAM read and

RAM write operations such that when A17P is high, the operation is

write; otherwise, it is a read operation. The only time the RAM is

written into by the microprocessor is during initialization. Thus,

address register A5 is initialized to 22200 hex which corresponds to

the highest record address plus four. This is because A5 is used to

step through the time records in a pre-decrement long word mode. A6 is

initialized to 2200 hex which is the lowest time record address for a

RAM write operation. Data register D7 is then cleared and used to

clear all 128 records in a loop that starts at LI. After clearing all

time records, registers A5 and A6 are reinitialized for RAM reads.

A5 is loaded with 2200 hex, and A6 is loaded with 2000 hex. The

SEARCH part is an initial step in the overall search process. It

records the first three encountered time records (the highest address

www.manaraa.com

69

time records), and at the same time sorts them in an ordered list.

As a result, data register DO holds the oldest referenced page frame

record while address register AO holds its address. D1 and A1 hold

the next oldest time record and its frame address, respectively. D2

and A2 contain the last referenced time record and its address.

After initializing the search process, the NORMAL SEARCH (NSRCH)

begins. It reads a time record into D7. It then compares it with the

most recently referenced frame record stored in 02. If the new record

has a higher value, then it has no importance since it corresponds to

a page frame that has been referenced more recently than any of the

three frames whose records are kept inside the microprocessor. In such

a case, the time record and its address are ignored. If the time record

is less than that in D2, then it must be considered. A comparison with

the record in DO and possibly D1 determines the new ordered list. The

old contents of D2 and A2 are discarded and the new list is stored such

that DO, D1, and D2 hold the time records, while AO, A1, and A2 hold

the corresponding addresses in the same order discussed above. Address

register AS is used as a pointer that steps through the list in a pre­

decrement mode. At TESTEND, the routine checks the completion of

searching all 128 records by comparing A5 to A6 which holds the lowest

address. If they match, then all 128 records have been searched; if

A5 and A6 do not match, the routine branches back to NSRCH to continue

the search. When all 128 records have been searched, the routine

starts the output process.

It might happen that a time record gets changed after being

www.manaraa.com

70

considered by the routine. Therefore, it is important to check the

validity of a record before producing it as the output. The output

process starts by checking the validity of the time record stored in

DO (the TR of the LRU page frame) by comparing DO to the current value

for the record in the RAM. If valid, the contents of AO are outputted

as the LRU page frame address, and the contents of DO are outputted as

the corresponding time record. If DO is not valid, D1 is checked for

validity and outputted along with A1, if it is still valid. If D1 is

not valid, D2 is checked. If valid, A2 and D2 are outputted. If none

of the records is valid, no output is produced and the routine jumps

back to NSRCH to start a new search after loading A5 with 2200 hex

as discussed before. It is worth mentioning that a page frame address

is logically shifted right one bit before being outputted. This maps

the output page frame address back to the original address space

assigned to the submodule (1000 hex through lOFE hex) instead of 2000

hex through 21FC hex, as seen by the submodule. Addresses 4000 and

4010 are assigned to the output latches.

An LRU Module Overview

Although a whole LRU module has not been built, it is rather easy

to build, especially since most of the module consists basically of

copies of the designed and built submodule. The only part of the module

that deserves more discussion is the supervisor submodule. As mentioned

earlier, the primary responsibility of the supervisor submodule is to

find out the overall page frame in main memory from among LRU area page

frames produced by the other submodules. Thus, if we assume, as before.

www.manaraa.com

71

that main memory is divided into eight equal areas of 128 frames each,

then the supervisor has to search only the eight records produced by

the area submodules. Therefore, it is clear that the amount of work

that needs to be done by the supervisor Is only 1/16 of that done by

an area submodule. This implies the following:

(1) The output rate of the module is almost the same as that of

a submodule.

(2) The potential access conflicts between an area submodule

and the supervisor submodule for output latch access should

be decided in favor of the area submodule.

The second item is very important in order not to slow down the

overall speed of the module. Thus, in order to meet this demand, straight

arbitration must be excluded and another way to solve potential conflicts

must be considered. A technique that is simply, practical, and easy to

implement will now be described.

For each submodule, a flip-flop that is automatically set whenever

the submodule is writing an output latch is used. The latches used in

the area submodule built are Intel's 8112s which have 3-state outputs.

All latch outputs can then be directly connected to the supervisor's

data bus. Since the supervisor microprocessor need only read the latches

(and not write into them), it is possible to freely read any latch at

any time by just enabling its outputs using proper addressing, as shown

in Figure 18. It might happen that the submodule microprocessor is

writing the latch while the supervisor is reading the latch at the same

time. There are two simple ways to solve this problem. The first

www.manaraa.com

SUBMODULE 0

LATCH 1 • • • LATCH 5

SUBMODULE N

LATCH 1 LATCH 5

DATA BUS

ENABLE LATCH 5 (O)
ENABLE LATCH 1(0):

SUPERVISOR
SUBMODULE

MICRO­
PROCESSOR

)D BUS

(CONTROL BUS)

DECODE
AND
CONTROL
LOGIC

5

to

5
5

i i

Figure 18. Possible connection between output latches and the supervisor submodule

www.manaraa.com

73

utilizes the above-mentioned flip-flop. The supervisor has to check

the flip-flop after each latch read operation. If the flip-flop is

set, the supervisor clears the flip-flop and repeats the read cycle.

The process is repeated until the flip-flop is found reset after the

cycle. It might seem that the supervisor would be slowed down too much

especially since it has to make 24 latch reads before producing an

output. That is not exactly true, because in any given latch read

cycle, the supervisor is dealing with only one submodule and the latter

writes the latch less than 1% of the time. Therefore, it is very

unlikely that the supervisor would have to repeat a latch read cycle

more than one time before getting a correct read cycle. Moreover, slow­

ing down the supervisor is not a problem even operating at 10% of its

maximum rate, since the output production rate of the supervisor would

still be faster than that of a submodule. Note that the work load of

the supervisor is approximately 1/16 that of an area submodule for

reasons mentioned above.

The second approach is even simpler than the first and can be

implemented by just letting the supervisor read a certain latch two

consecutive times and compare the values read. If the values agree,

it goes on; if not, it reads the latch again until an agreement is

found between the last two read cycles. It is worth mentioning, how­

ever, that at most it would have to read a latch a maximum of four times

before a match is found. This happens when the submodule's micro writes

the latch during the second read cycle by the supervisor. In such a

case, the supervisor would have to do another two read cycles to the

www.manaraa.com

74

same latch at most. This is because once a specific latch is written

into by an area submodule, the next write cycle to the same latch is

not less than 128 RAM references away. Thus, it seems that even the

second simpler technique can, at most, slow down the supervisor sub-

module to work at no less than 1/4 of its maximum possible speed.

Figure 18 shows a possible connection of the output latches to the

supervisor submodule data bus.

www.manaraa.com

75

CHAPTER VI. ADDRESS GENERATION ROUTINES, EXPERIMENTAL

DATA, AND SOME REMARKS

In this chapter, the routines designed to run on the address

generation microprocessor will be discussed first. The data obtained

from testing the LRU submodule using different combinations of address

generation routines and LRU routines will then be given. The experi­

mental data provide very important performance figures, hence some

remarks and observations will be introduced. We will discuss the possi­

bility of designing an LRU module that represents less loading on the

supported system than the one described earlier which provides output

at a faster rate than actually needed.

Address Generation Routines

In order to test the performance of the LRU submodule, it is essen­

tial to simulate the address stream of the main system. This implies

the need for different address sequences with different characteristics

such as address generation rate and the time period during which some

addresses are deliberately skipped to simulate unreferenced page frames.

Therefore, four address generation routines have been designed, each of

which produces a sequence that exhibits some specific characteristics.

The routines are ADDGENl, ADDGEN2, ADDGEN3, and ADDGEN4. The last one

is shown in Figure 16, while the other three are given in Appendices

C, D, and E, respectively. However, in order to enable easy understand­

ing of the experimental data, the address sequences produced by the

routines are shown in Figures 19 through 23. The skipped addresses are

www.manaraa.com

76

m
Ë

SEGMENT 1

1000
1002

IS32 Skip 1030

Skip 1060 for 4.1 ms

<r 1070
1074

lOFE

SEGMENT 3

<A 1000
I 1002
•u :
rn

Skip 1090
108E
1092

lOFE

SEGMENT 2

1000

i l^A Sk'P

Skip 1072

for 3.37 ms

{gpg Skip 10F8 & lOFA for 2.73 ms

lOFE

SEGMENT 4

1000
1002

I 12:2 Skip 1016
1014
1018

w : for 2.05 ms

lOFE

Figure 19. ADDGENl sequence (one NOP instruction in each loop)

www.manaraa.com

77

SEGMENT 5

m 1000
g. 1002

£ :

^ 10C4 Skip 10C2 for 1.4ms

I :
10FE

Figure 19. (Continued)

www.manaraa.com

78

1000
1002

LA

102E
1032

10FC
10FE

Skip 1030 for 5.4 ms

C-\

1000
1002
:

1070
1076

lOFE

Skip 1072, 1074 for 3-7 ms

1000
1002

10F6
10FE

Skip 10F8, 10FA, . ̂ ,
and lOFC °

ms

tfi

I
4-*
CM

1000
1002

1014
1018

lOFE

1000
1002

Skip 1016 for 2.7 ms

loco
10C4

Skip 10C2 for 3.6 ms

lOFE

Figure 20. Address sequence generated by ADDGEN2 (three NOP instruc­
tions are used)

www.manaraa.com

LA

tft
i

79

1000
1002

102E
1032

lOFE

1070
1076

lOFE

1000
% 1002

1000
1002

i 1014
« 1018
CM :

lOFE

1000
1002

lo'co
lOCA
:
10FE

Skip 1030 for 3 456 ms

1000 No NOP instructions included
1002

Skip 1072, 1074 for 2.17 ms

Skip 1016 for 1.728 ms

Skip 10C2 for 2.88 ms

Figure 21. Address sequence generated by ADDGEN3 (no NOP instructions
are used)

www.manaraa.com

80

1000
1002

m :
i 102E
% 1032
u\ :

10FE

1000
1002

m :
i 1070

1074
(S :

lOFE

U)
<u

Skip 1030 for 3.49 ms

Skip 1072 for 1.75 ms

1000
j002

s IS22 Skip 1020

s. i

2 103E
W 1042 Skip 1040 for 1.16 ms

° \Zi Skip '0F8

10FC
10FE

1000
1002

£ 1014
CO 1018

lOFE

1000
"c S 1002 Al I addresses remain un-
o g. ; referenced for only 0.576 ms
^ lOFE

Skip 1016 for 5.25 ms

Figure 22. ADDGEN4 sequence (no NOP instructions included in the loops)

www.manaraa.com

81

pointed out along with the time period during which these addresses

remain unreferenced.

Each routine is composed of five segments, and each segment pro­

duces the hexadecimal addresses 1000 through lOFE in increments of two

starting at 1000. It is to be pointed out again that the address line

AQJ of the MC68000 microprocessor is used internally to select bytes.

Therefore, address lines through Ajj are used to simulate the page

frame address within the main memory area assigned to the LRU sub-

module. Thus, address lines through A^y can change between 0000000

and 1111111 giving the desired 128 distinct addresses. Address line

A^2Y is used to differentiate ROM references within the address genera­

tion circuit (A^2Y=0), and addresses that simulate main memory address

stream Word instructions are used to produce the desired

sequences, making A^^ insignificant to the operation. This explains

the selected hexadecimal address range 1000 through 10FE.

To control the address generation rate and hence the arrival rate

at the LRU submodule, the NO OPERATION (NOP) instructions have been

utilized to add some deliberate delay between consecutive addresses.

The number of NOP instructions is the same in all five segments of a

certain routine. This means that the address generation rate of a

certain routine is almost constant. However, the number of NOP instruc­

tions used in different routines is not constant and is as follows:

Rout i ne Number of NOP
instructions

ADDGENl
ADDGEN2
ADDGEN3
ADDGEN4

3
0
0

www.manaraa.com

82

Within a certain segment, some addresses are skipped to simulate

a page frame that is not referenced. The time period during which a

certain address is skipped is controlled by the number of times a

segment is repeated before moving to the next segment. Some segments

are repeated up to eight times before moving to the next segment,

while some segments are executed only one time followed immediately by

the next segment.

After all five segments are executed, the routine jumps back to the

first segment and the process is repeated indefinitely.

All that is required from the address generation circuit is to put

the desired sequence of addresses on the address bus. This is done by

making the address generation routines reference a non-existing list.

Note that no RAM is employed in the address generation circuit. The

routines use address register AQ as a pointer to the list. Word instruc­

tions are used to read words between addresses 1000 and lOFE (hex) into

data register Dg. This results in the address sequence to be put on the

address bus and directed to the LRU submodule whenever A^^j 's high.

Experimental Data

A total of twelve experiments have been executed. Each experiment

corresponds to a different address generation routine and an LRU routine

combination. The data recorded in each experiment represent the first

64 output records produced by the LRU submodule. A record consists of

two parts, the LRU page frame address and the time of its last reference

(its time record). It must be noted that although 8 bits can properly

represent the page frame address, it is more convenient to record a 16-bit

www.manaraa.com

83

Table 1. Key to different experimental data tables

ROUTINE! R0UTINE2 ROUTINES

ADDGENl

ADDGEN2

ADDGEN3

exp. 1
Table 2

exp. 4
Table 5

exp. 7
Table 8

exp. 2
Table 3

exp. 5
Table 6

exp. 8
Table 9

exp. 3
Table 4

exp. 6
Table 7

exp. 9
Table 10

ADDGEN4
exp. 10
Table 11

exp. 11
Table 12

exp. 12
Table 13

www.manaraa.com

84

address word as produced by the LRU submodule to allow easy comparison

with the address sequence produced by the address generation circuit.

However, only the low order byte of the frame address is stored in an

8-bit latch which is adequate for the LRU module operation. It must

also be noted that a time record is 32 bits long (because the TIMER is

32 bits long); however, only the low order 16 bits have been recorded

since the high order 16 bits remain all zeros when the first 64 records

are recorded. A time record represents a reference number rather than

actual time. This is because the TIMER is incremented each time a valid

address arrives to the submodule, and thus the TIMER contents represent

the reference number.

The data obtained in the twelve experiments are recorded in twelve

tables. To facilitate easy reference to the data of some experiment.

Table 1 has the experiment number and its data table number as the

entry, with the address generation routines and the LRU routines as

ordinates. For instance, experiment 5 used ADDGEN2 as the address

generation routine and R0UTINE2 as the LRU routine and the table that

contains the output data is Table 6. All data are in hexadecimal format.

Two HP 1602 logic analyzers have been utilized to record the data.

The data lines of both analyzers were connected to the data bus of the

LRU submodule's microprocessor, while the signals that strobe the out­

put latches were used for clocking the analyzers appropriately.

The first observation from the data is that the LRU submodule works

properly. The output page address produced corresponds to some skipped

addresses in the address sequence generated by the address generation

www.manaraa.com

85

Table 2. ADDGENl and ROUTINEI (one NOP instruction)

Address (hex) Time Address Time

1 1030 0000 33 10A6 24AD
2 1030 0000 34 1030 26E9
3 1030 0000 35 1030 26 E9
4 1010 0279 36 1010 29C9
5 1010 0279 37 1010 24C9
6 1010 0279 38 1072 29F8

7 10F8 0560 39 10F8 2CB0
8 10F8 0560 40 1016 2E39
9 10C2 0867 41 1030 30BD
10 1030 096D 42 1030 30BD
11 1030 0960 43 1030 30BD
12 1030 0960 44 1010 339D
13 1010 0C4D 45 1010 339D
14 1010 0C4D 46 10F8 3684
15 10F8 0F34 47 10F8 3684
16 1016 10BD 48 10A6 3855
17 1030 1341 49 10C2 39DB
18 1030 1341 50 1030 3A91
19 1030 1341 51 1030 3A91
20 1010 1621 52 1010 3D71
21 1010 1621 53 1010 3D71
22 1010 1621 54 10F8 4058

23 10F8 1908 55 1016 41E1
24 10F8 1908 56 1030 4465

25 10C2 1C5F 57 1030 4465
26 1030 1D15 58 1030 4465

27 1030 1D15 59 1010 4745
28 1030 1D15 60 1010 4745
29 1010 IFF5 61 1010 4745
30 1010 1FF5 62 10F8 4A2C
31 10F8 22DC 63 10F8 4A2C

32 10F8 22 DC 64 10C2 4D83

www.manaraa.com

86

Table 3. ADDGEN1 and R0UTINE2

Address (hex) Time (hex) Address Time

1 1030 0000 33 1030 26E9
2 1030 0000 34 1030 26E9

3 1010 0279 35 1030 26E9
4 1010 0279 36 1010 29C9

5 10F8 0560 37 1010 29C9
6 10F8 0560 38 10F8 2CB0

7 10A6 0731 39 10F8 2CB0
8 10C2 0867 40 1016 2E39
9 1030 0960 41 1030 30BD
10 1030 0960 42 1030 30BD
11 1030 0960 43 1010 339D
12 1010 0C4D 44 1010 3890
13 1010 0C4D 45 10F8 3684
14 1072 0C7C 46 10F8 3684
15 10F8 0F34 47 10A6 3855
16 1016 10BD 48 10C2 39DB
17 10C2 128B 49 1030 3A91
18 1030 1341 50 1030 3A91
19 1030 1341 51 1030 3A91
20 1010 1621 52 1010 3D71
21 1010 1621 53

54
1010 3D71

22 10F8 1908
53
54 1072 3D AO

23 10F8 1908 55 10F8 4058
24 10C2 1C5F 56 1016 41E1
25 1030 1D15 57 10C2 43AF
26 1030 1D15 58 1030 4465
27 1030 1D15 59 1030 4465
28 1010 1FF5 60 1030 4465
29 1010 1FF5 61 1010 4745
30 10F8 22DC 62 1010 4745
31 10A6 24AD 63 10F8 4A2C

32 10C2 2633 64 10F8 4A2C

www.manaraa.com

87

Table 4. ADDGENl and ROUTINES

Address (hex) Time Address Time

1 1030 0000 33 1030 26E9
2 1030 0000 34 1030 26E9
3 1010 0279 35 1010 29C9
4 1072 02A8 36 1072 29F8
5 10F8 0560 37 10F8 2CB0
6 1016 06E9 38 10A6 2E81

7 10A6 0731 39 10C2 3007
8 ' 10C2 0867 40 1030 30BD
9 1030 0960 41 1030 30BD
10 1030 0960 42 1030 30BD
11 1060 0985 43 1010 339D
12 1010 0C4D 44 1010 339D
13 1010 0C4D 45 10F8 3684
14 10F8 0F34 46 10F8 3684
15 10F8 0F34 47 1016 3800
16 1016 lOBD 48 1030 3A91
17 1030 1341 49 1030 3A91
18 1030 1341 50 1010 3D71
19 1010 1621 51 1072 3DA1
20 1072 1650 52 10F8 4058
21 10F8 1908 53 10A6 4229
22 1016 1A91 54 10C2 43AF
23 10A6 1AD9 55 1030 4465
24 10C2 1C5F 56 1030 4465
25 1030 1D15 57 1030 4465
26 1030 1D15 58 1010 4745
27 1060 1D2D 59 1010 4745
28 1010 1FF5 60 10F8 4A2C

29 1010 1FF5 61 10F8 4A2C
30 10F8 22 DC 62 1016 4BB5

31 10F8 22DC 63 1030 4E39
22 1016 2465 64 1030 4E39

www.manaraa.com

88

Table 5- ADDGEN2 and ROUTINE!

Address (hex) Time Address (hex) Time

1 1030 0000 33 1016 1C30
2 1030 0000 34 10C2 lEOO

3 1030 0000 35 10C2 lEOO
4 1030 0000 36 10C2 lEOO

5 1072 0263 37 1030 2033
6 1072 0263 38 1030 2033

7 1072 0263 39 1030 2033
8 10F8 04EE 40 1072 2340
9 10F8 04EE 41 1072 2340
10 1016 0674 42 10F8 2588
11 10C2 0844 43 10F8 2588
12 10C2 0844 44 1016 270E
13 10C2 0844 45 10C2 28DE
14 1030 0A77 46 10C2 28DE
15 1030 0A77 47 10C2 28DE
16 1030 0A77 48 1030 2B11

17 1072 0D91 49 1030 2B11
18 1072 0D91 50 1030 2B11

19 1072 0D91 51 1030 2811
20 10F8 OFCC 52 1072 2E2B

21 10F8 OFCC 53 1072 2E2B
22 1016 1152 54 10F8 3066

23 10C2 1322 55 10F8 3066
24 10C2 1322 56 10F8 3066

25 10C2 1322 57 1016 31 EC
26 1030 1555 58 10C2 33BC
27 1030 1555 59 10C2 33BC
28 1030 1555 60 10C2 33BC
29 1072 186F 61 1030 35EF
30 1072 186F 62 1030 35EF
31 10F8 1AAA 63 1030 35EF

32 10F8 lAAA 64 1030 35EF

www.manaraa.com

89

Table 6. ADDGEN2 and R0UTINE2

Address (hex) Time Address Time

1 1030 0000 33 10C2 1E00
2 1030 0000 34 10C2 1E00

3 1030 0000 35 1030 2033
4 1072 0263 36 1030 2033
5 1072 0263 37 1030 2033
6 10F8 04EE 38 1072 2340

7 10F8 04EE 39 1072 2340
8 10F8 04 EE 40 10F8 2588
9 1016 0674 41 10F8 2588
10 10C2 0844 42 1016 270E
11 10C2 0844 43 10C2 28DE
12 10C2 0844 44 10C2 28DE
13 1030 0A77 45 10C2 28DE
14 1030 0A77 46 1030 2B11
15 1030 0A77 47 1030 2B11
16 1030 0A77 48 1030 2B11
17 1072 0D91 49 1072 2E2B
18 1072 0D91 50 1072 2E2B
19 10F8 OFCC 51 10F8 3066
20 10F8 OFCC 52 10F8 3066
21 1016 1152 53 10F8 3066
22 10C2 1322 54 1016 31 EC
23 10C2 1322 55 10C2 33BC
24 10C2 1322 56 10C2 33BC

25 1030 1555 57 10C2 33BC
26 1030 1555 50 1030 35EF
27 1030 1555 59 1030 35EF
28 1072 186F 60 1030 35EF
29 1072 186F 61 1030 35EF
30 10F8 1AAA 62 1072 3909
31 10F8 1AAA 63 1072 3909
32 1016 1C30 64 10F8 3B44

www.manaraa.com

90

Table 7- ADDGEN2 and ROUTINES

Address (hex) Time Address Time

1 1030 0000 33 1030 2033
2 1030 0000 34 1072 2340
3 1030 0000 35 1072 2340
4 1072 0263 36 10F8 2588
5 1072 0263 37 10F8 2588
6 10F8 04EE 38 1016 270E

7 10F8 04EE 39 10C2 28DE
8 1016 0674 40 10C2 28DE

9 10C2 0844 41 1030 2611
10 10C2 0844 42 1030 2B11
n 1030 0A77 43 1030 2B11
12 1030 0A77 44 1072 2E2B
13 1030 0A77 45 1072 2E2B
14 1072 0D91 46 10F8 3066
15 1072 0D91 47 10F8 3066
16 10F8 OFCC 48 1016 31EC
17 10F8 OFCC 49 10C2 33BC
18 1016 1152 50 10C2 33BC
19 10C2 1322 51 1030 35EF
20 10C2 1322 52 1030 35EF
21 1030 1555 53 1030 35EF
22 1030 1555 54 1072 3909
23 1030 1555 55 1072 3909
24 1072 186F 56 10F8 3B44
25 1072 186F 57 10F8 3B44
26 10F8 lAAA 58 1016 3CCA

27 10F8 lAAA 59 10C2 3E9A
28 1016 1C30 60 10C2 3E9A
29 10C2 1E00 61 1030 40CD
30 10C2 lEOO 62 1030 40CD
31 1030 2033 63 1030 40CD

32 1030 2033 64 1072 43E7

www.manaraa.com

91

Table 8. ADDGEN3 and ROUTINE!

Address Time Address Time

1 1030 0000 33 10F8 3B44
2 1030 0000 34 10C2 3E9A
3 1072 0263 35 10C2 3E9A
4 10F8 04EE 36 1030 40CD

5 10C2 0844 37 1030 40CD
6 10C2 0844 38 1072 43E7

7 1030 0A77 39 10F8 4622
8 1030 0A77 40 10C2 4976
9 1072 0D91 41 1030 4BAB
10 10F8 OFCC 42 1030 4BAB
11 10C2 1322 43 1072 4EC5
12 10C2 1322 44 10F8 5100

13 1030 1555 45 10C2 5456
14 1030 1555 46 1030 5689
15 1072 186F 47 1030 5689
16 10F8 lAAA 48 1072 59A3
17 10C2 lEOO 49 10F8 5BDE
18 10C2 1E00 50 1016 5D64
19 1030 2033 51 10C2 5F34
20 1030 2033 52 1030 6167
21 1072 2340 53 1030 6167
22 10F8 2588 54 1072 6481
23 10C2 28DE 55 10F8 66BC
24 10C2 28DE 56 1016 6842

25 1030 2B11 57 10C2 6A12
26 1030 2B11 58 1030 6C45
27 1072 3E2B 59 1030 6C45
28 10F8 3066 60 1072 6F5F

29 10C2 33BC 61 10F8 719A
30 10C2 33BC 62 10C2 74F0

31 1030 35EF 63 10C2 74FO
32 1072 3909 64

www.manaraa.com

92

Table 9- ADDGEN3 and R0UTINE2

Address (hex) Time (hex) Address (hex) Time (hex)

1 1030 0000 33 10C2 3E9A
2 1030 0000 34 10C2 3E9A
3 1072 0263 35 1030 40CD
4 10F8 04EE 36 1030 40CD

5 10C2 0844 37 1072 43E7
6 10C2 0844 38 10F8 4622

7 1030 0A77 39 10C2 4978
8 1030 0A77 40 1030 4BAB
9 1072 0D91 41 1030 4BAB
10 10F8 OFCC 42 1072 4EC5
n 10C2 1322 43 10F8 5100
12 10C2 1322 44 10C2 5456
13 1030 1555 45 10C2 5456
14 1030 1555 46 1030 5689
15 1072 186F 47 1030 5689
16 10F8 lAAA 48 1072 59A3
17 10C2 lEOO 49 10F8 5BDE
18 1030 2033 50 10C2 5F34
19 1030 2033 51 1030 6167
20 1072 234D 52 1030 6167
21 10F8 2588 53 1072 6481
22 10C2 28DE 54 10F8 66BC

23 10C2 28DE 55 10C2 6A12
24 1030 2B11 56 10C2 6A12
25 1030 2B11 57 1030 6C45
26 1072 2E2B 58 1030 6C45
27 10F8 3066 59 1072 6F5F
28 10C2 33BC 60 10F8 719A
29 1030 35EF 61 10C2 74F0
30 1030 35EF 62 1030 7723
31 1072 3909 63 1030 7723
32 10F8 3B44 64 1072 7A3D

www.manaraa.com

93

Table 10. ADDGEN3 and R0UTINE3

Address (hex) Time (hex) Address Time

1 1030 0000 33 1030 40CD
2 1030 0000 34 1072 43E7

3 1072 0263 35 10F8 4622
4 10F8 04EE 36 10C2 4978
5 10C2 0844 37 10C2 4978
6 1030 0A77 38 1030 4BAB
7 1030 0A77 39 1072 4EC5
8 1072 0D91 40 10F8 5100

9 10F8 OFCC 41 10C2 5456
10 10C2 1322 42 10C2 5456
11 10C2 1322 43 1030 5689

12 1030 1555 44 1072 59A3
13 1030 1555 45 10F8 5BDE
14 1072 186F 46 10C2 5F34
15 10F8 lAAA 47 10C2 5F34
16 10C2 lEOO 48 1030 6167

17 10C2 lEOO 49 1072 6481
18 1030 2033 50 10F8 66BC

19 1072 2340 51 10C2 6A12
20 10F8 2588 52 10C2 6A12

21 10C2 28DE 53 1030 6C45
22 10C2 28DE 54 1072 6F5F
23 1030 2B11 55 10F8 719A
24 1072 2E2B 56 10C2 74F0
25 10F8 3066 57 10C2 74F0
26 10C2 33BC 58 1030 7723
27 10C2 33BC 59 1072 7A3D
28 1030 35EF 60 10F8 7C78
29 1072 3909 61 10C2 7FCE

30 10F8 3B44 62 10C2 7FCE
31 10C2 3E9A 63 1030 8201

32 10C2 3E9A 64 1072 851B

www.manaraa.com

94

Table 11. ADDGEN4 and R0UTINE1

Address (hex) Time (hex) Address Time

1 1030 OOOO 33 1016 3902
2 1030 OOOO 34 1016 3902
3 1072 02 B3 35 1030 3E03
4 1016 04FF 36 1030 3E03

5 1016 04FF 37 1016 4369
6 1016 04FF 38 1016 4369

7 1030 OAOO 39 1016 4369
8 1030 OAOO 40 1030 486A
9 1072 0D1A 41 1030 486A
10 1016 0F66 42 1072 4B84
11 1016 0F66 43 1016 4DD0
12 1016 0F66 44 1016 4DD0
13 1030 1467 45 1016 4DD0

14 1030 1467 46 1030 52D1
15 1016 19CD 47 1030 52D1
16 1016 19CD 48 1016 5837
17 1016 19CD 49 1016 5837
18 1030 1ECE 50 1016 5837
19 1030 lECE 51 1030 5038
20 1072 21E8 52 1030 5038
21 1016 2434 53 1072 6052
21 1016 2434 53 1072 6052

22 1016 2434 54 1016 629E
23 1016 2434 55 1016 629E
24 1030 2935 56 1016 629E

25 1030 2935 57 1030 679F
26 1016 2E9B 58 1030 679F

27 1016 2E9B 59 1016 6005
28 1016 2E9B 60 1016 6005

29 1030 339C 61 1016 6005
30 1030 339C 62 1030 7206

31 1072 36B6 63 1030 7206
32 1016 3902 64 1072 7520

www.manaraa.com

95

Table 12. ADDGEN4 and ROUTINEZ

Address (hex) Time (hex) Address Time

1 1030 0000 33 1016 3902
z 1030 0000 34 1016 3902
3 1016 04FF 35 1016 3902
4 1016 04FF 36 1030 3E03
5 1016 04FF 37 1030 3E03
6 1030 OAOO 38 10F8 42DD

7 1030 OAOO 39 1016 4369
8 10F8 OEDA 40 1016 4369
9 1016 0F66 41 1016 4369
10 1016 0F66 42 1030 486A
11 1016 0F66 43 1030 486A
1Z 1030 1467 44 10F8 4D44
13 1030 1467 45 1016 4DD0
14 10F8 1941 46 1016 4DD0
15 1016 19CD 47 1016 4DD0
16 1016 19CD 48 1030 52D1
17 1016 19CD 49 1030 52D1
18 1030 lECE 50 10F8 57AB
19 1030 lECE 51 1016 5837
ZO 10F8 23A8 52 1016 5837
Z1 1016 2434 53 1016 5837
ZZ 1016 2434 54 1030 5038
23 1016 2434 55 1030 5038
Z4 1030 2935 56 10F8 6212
25 1030 2935 57 1016 629E
Z6 10F8 2E0F 58 1016 629E

27 1016 2E9B 59 1016 629E
Z8 1016 w#9B 60 1030 679F
Z9 1016 2E9B 61 1030 679F
30 1030 339C 62 10F8 6C79
31 1030 339C 63 1016 6005

32 10F8 3876 64 1016 6005

www.manaraa.com

96

Table 13. ADDGEN4 and ROUTINES

Address Time Address Time

1 1030 0000 33 1016 3902
2 1030 0000 34 1016 3902
3 10F8 0473 35 1016 3902
4 1016 04FF 36 1016 3902
5 1016 04FF 37 1030 3E03
6 1016 04FF 38 1030 3E03

7 1030 OAOO 39 10F8 42dd
8 1072 0D1A 40 1016 4369
9 1016 0F66 41 1016 4369
10 1016 0F66 42 1016 4369
11 1016 0F66 43 1030 486A
12 1030 1467 44 1072 4B84
13 1030 1467 45 1016 4DD0
14 1072 1781 46 1016 4DD0
15 1016 19CD 47 1016 4DD0
16 1016 19CD 48 1030 52D1
17 1016 19CD 49 1030 52D1
18 1016 19CD 50 1072 55EB
19 1030 lECE 51 1016 5837
20 1030 lECE 52 1016 5837
21 10F8 23A8 53 1016 5837
22 1016 2434 54 1016 5837
23 1016 2434 55 1030 5038
24 1016 2434 56 1030 5038

25 1030 2935 57 10F8 6212
26 1072 3C4F 58 1016 629E
27 1016 2E96 59 1016 629E
28 1016 2E9B 60 1016 629E
29 1016 2E9B 61 1030 679F
30 1030 339C 62 1072 6AB9
31 1030 339C 63 1016 6005
32 1072 3686 64 1016 6D05

www.manaraa.com

97

circuit. As discussed in Chapter 5, the LRU routines check the validity

of a record before producing it as an output. This can be noticed from

the different experiments, since in no case has a page address been

produced as an output without being one of the skipped addresses in

the generated address sequences.

Because the LRU submodule works asynchronously with the address

generation module, it can be observed that the output record sequence

is not exactly repetitive although the address sequence directed to the

submodule is repetitive.

The time interval between two consecutive addresses has been calcu­

lated for the four address generation routines. With a 6MHZ clock, the

time intervals are:

These time intervals are calculated rather than measured and the inter­

ference with the LRU submodule is not taken into consideration. Inter­

ference has also not been considered in calculating the time periods

during which some addresses are skipped as shown in Figures 22 through

25- Although the delay due to the interference with the LRU submodule

has not been considered, the numbers provide good ground for comparison.

Also, it is true that for any system to be supported by an LRU module,

the figures describing the system speed and address stream are likely to

assume conflict free operation.

The data obtained from the twelve experiments provide a basis to

ADDGENl
ADDGEN2
ADDGEN3
ADDGEN4

5.3 ys

3.66ns
2.83ns
2.83ys

www.manaraa.com

98

compare the performance of different LRU routines. Although 64 records

per experiment are not large enough to draw any statistical conclu­

sions, it has been observed that there is no major difference in the

data when a relatively large number of records is recorded. The reason

is that the whole address stream generated by a certain routine is

repetitive and the only factor that might alter the output data is the

relative arrival times for RAM access requests from the address genera­

tion circuit and the LRU submodule.

In the following section, some statistical data that relate to

the performance of the three LRU routines described earlier under dif­

ferent arrival rates are introduced. The major comparison figure will

be the probability that an output is produced by the LRU submodule

under different arrival rates and different time periods, during which

a simulated page frame is not referenced. Table 14 summarizes the

performance of ROUTI NE1 which keeps only one LRU record internally

under different arrival rates. It can be noticed that it performs

better with slower address arrival rates. It can also be seen that any

page frame not referenced for 2.17 ms or more is outputted with a proba­

bility of one as long as it is the oldest referenced page frame. It is

worth pointing out that with ADDGEN4 address 1030 hex is skipped for

about 3.49 ms and has always been produced as an output two consecutive

times. This emphasizes that 2.17 ms is enough time period for the LRU

submodule when running ROUT I NE1 to produce a correct output. It is

interesting to note that when two or more addresses are skipped in a

certain segment of an address generation routine, the lowest of these

www.manaraa.com

99

Table 14. Performance of ROUTI NE1

Address
generation
routine
(arrival
rate)

Time
period
address

is
skipped

Proba-
bi1i ty
of

being
outputted

ADDGENl 1.4 ms 0.5

(5.34 ys) 2.05 ms 0.625

2.73 ms
or more

1.0

ADDGEN2

(6.7 us) 2.7 ms
or more

1.0

ADDGEN3

(3.5 ys) 1.728 ms 0.09

2.17 ms
or more

1.0

A0DGEN4 1.16 ms 0.0

(3.5 Tis) 1.75 ms 0.566

3.49 ms
or more

1.0

www.manaraa.com

100

addresses is the LRU address because all four address generation routines

reference lower addresses before higher ones. In no case has an

address other than the lowest skipped address been produced as the out­

put of the LRU submodule when running ROUTINEl. This is because

ROUTINEl keeps only one record inside the microprocessor. This

implies that after the search and the validity check, if the record is

not valid, no output is produced and the routine starts a new search.

In such a case, it is certain that by the end of the new search, none

of the higher order addresses would still be valid since the search

time is longer than the time needed to execute an address generator

segment. Moreover, since an invalid record means that the address

generation routine has moved to a new segment, it is certain that

the output is the lowest skipped address or none at all in a single

ROUTINEl execution.

The same kind of analysis can be applied to the performance

statistics of R0UTINE2 shown in Table 15. The statistics shown for the

ADDGEN4 and ROUTINEZ combination may look strange. An address skipped

for 1.16 ms has a probability of 0.909 of being outputted, whereas an­

other address skipped for 1.75 ms has a probability of zero of being

outputted. To explain, it must be said that in the performed experi­

ments, a page frame with higher address has a better chance of being

produced as the output of the LRU submodule than a lower address provided

that it is the actual LRU frame. The reason is that the address genera­

tion routines scan the addresses from low to high. Thus, if the search

ends with two LRU records, the probability that higher address would

www.manaraa.com

101

Table 15. Performance of ROUTINE!

Address Time P roba-
generation period bility
routine address of

(address/ is being
time) skipped outputted

ADDGENl

(address/5.34)js) 1.4 ms 0.866

2.05 ms 0.866

2.73 ms 1.0
or more

ADDGEN2

(address/6.7 ps) 2.7 ms 1.0
or more

ADDGEN3 1.728 ms 0.0

(address/3.5 lis) 2.17 ms 1.0
or more

ADDGEN4

(address/3.5 ps) 1.16 ms 0.909

1.75 ms 0.0

3.49 ms 1.0
or more

www.manaraa.com

102

still be valid is higher than the probability that the lower address

would still be valid. This is particularly true if the address

generation segment which skips these addresses is executed only one

time. This is the case with segment 3 of ADDGENA in which the hex

addresses 1020, 1040, and 10F8 are skipped.. Since the segment is

executed only one time, the mentioned addresses are not referenced for

1.16 ms. Address 10F8, thus, has the highest probability of being

outputted for the mentioned reason. Thus, there is a strong relation­

ship between the probability of outputting a certain page frame address

and its location in main memory only if the LRU page frame is not

referenced for less than 2.17 ms. This does not imply that the LRU

submodule is producing a wrong result since at the time an output is

produced address 10F8, in the above case, is the actual LRU frame

address. It is to be noted that in an actual LRU support module situa­

tion, the order in which page frames are referenced is rather more

random than in ascending order as in the test experiments.

It is worth noticing that address 1030 hex which remains unrefer­

enced for 3.49 ms is outputted two consecutive times in all recorded

cases when ROUT INE2 and ADDGEN4 are used. However, as with ROUTINE!,

a skipping period of 2.17 ms of some page address makes it certain that

the frame address would be the LRU submodule's output provided that it

is the oldest referenced frame.

The performance statistics of ROUTINES are shown in Table 16.

There is no great difference in the performance of the three LRU

routines considered, and any one of them is capable of producing any

www.manaraa.com

103

Table 16. R0UTINE3 performance statistics

Address Time Proba-
generation period bility
routine address of

(address/ is being
us) skipped outputted

AODGENl

(address/5.34 jis) 1.4 ms

2.05 ms

2.73 ms
or more

0.5

0.5-0.75
(depend­
ing on
address)

1.0

AD0GEN2

(address/6.7 ps) 2.7 ms
or more

1.0

ADDGEN3

(address/3.5]Js)

1.728 ms

2.17 ms
or more

0 .0

1.0

ADDGEN4

(address/3.5 us)

1.16 ms

1.75 ms

3.49 ms
or more

0.40

0.60

1.0

www.manaraa.com

104

page frame number as an output with a probability of one if it remains

unreferenced for 2.17 ms or more, provided that it is the oldest

referenced frame. However, it seems that R0UTINE2 is superior to both

ROUTI NE1 and R0UTINE3 because it executes faster than ROUTINES and it

will output some page addresses that might be missed by ROUTINE!. For

instance, it takes ROUTINES about eleven repetitions of ADDGENl to pro­

duce 64 output records, whereas it takes R0UTINE2 about 8 ̂ repetitions

of ADDGENl to produce 64 output records. In comparison with ROUT I NE 1,

it is clear that whenever two addresses are skipped in one address

generation routine segment, the probabi1ity that the higher address

will be outputted by R0UTINE2 is certainly higher than that with

ROUT I NE1. For example, if we compare the data obtained in experiments

1 and 2, it can be seen that the probability that address 1072, which

is skipped in the second segment of ADDGENl along with address 1010,

has a higher chance of being outputted with R0UTINE2 than with ROUT I NE1.

Remarks and Observations

It has been observed experimentally that the time between two

consecutive LRU outputs ranged between 1.5 ms and 2.75 ms. If we

assume that the average time interval needed to produce an output is

around 2.25 ms, it is possible to use the 8 MHZ version of the MC68000

microprocessor and have an output every approximately 1.69 ms. This

output rate is actually faster than one would really need. This is

because a computer system would not transfer pages to main memory at

this rate, especially since it might take a modern disk 10 ms or more

www.manaraa.com

105

to transfer a page [23]. To make use of this fact, one may suggest

increasing the number of page frames assigned to a submodule to 256

or even 512 instead of 128 without jeopardizing the performance.

This in effect means cutting the number of submodules to one-half or

one-fourth the number when 128 pages are assigned to a submodule.

A better idea is to try to reduce the amount of loading the LRU module

represents on the main system. This idea will now be discussed in

detai1.

Reducing LRU module loading on main system

The LRU module is supposed to support the main system by performing

the function of finding the least recently used page frame in main

memory. In an ideal situation, the LRU module should work in total

parallelism with the main system without any kind of interference. In

our design, we used straight arbitration to solve the submodule's RAM

access conflicts as discussed earlier. In our design, the probability

that the main system will be forced to wait until a microprocessor com­

pletes a read cycle is estimated to be less than 1%. This is based on

the fact that the microprocessor accesses the RAM on the average less

than 20% of the time, and based also on the reasonable assumption that

on the average a certain page will be accessed 20 consecutive times

before switching to another page. Hence, only 1/20 of the addresses

will actually reach the LRU module because of the filtering circuit

effect. However, it is possible to use the designed circuit to

support a main system that is two times faster. This is because with

www.manaraa.com

106

an 8 MHZ microprocessor, a RAM cycle would take about 500 ns, while

the TIMER-RAM combination can work at a speed that would allow access

every 250 ns. Thus, a 1% interference would actually become a 2% delay

since the main system would have to wait for a memory cycle that is

two times longer than its memory cycle.

One possible technique to reduce the interference by about 50%

is to use the BUS ERROR (BERR) processing exhibited by the MC68000

microprocessor [22]. The MC68000 will repeat the bus cycle if the

BERR and the HALT signals are activated at least 50 ns before the

DTACK signal is received. This feature can be utilized to give the

main system higher access priority to a submodule's RAM than the

microprocessor. A timing diagram of an MC68000 word read cycle with

two wait states (as is the case in our circuit) is shown in Figure 29.

The time period X is the period during which any attempt to force the

microprocessor to repeat the bus cycle would be too late and the read

cycle has to be completed. However, any request to copy the TIMER into

the RAM arriving during the time period marked Y can be granted immedi­

ately by utilizing the bus error feature. In such a case, the hard­

ware logic must be designed to activate the BERR and HALT signals

and at the same time put all the submodule's 3-state buffers in the

high impedance state. This would cause the MC68000 to repeat the bus

cycle immediately after the current bus cycle is completed. There is

no limitation on repeating the bus cycle as long as the mentioned timing

requirements are met. This allows a certain bus cycle to be repeated

several times if the BERR and HALT signals are activated properly every

www.manaraa.com

107

time.

It is clear that the added logic must also cause the main system

to wait if the RAM access request is received during the period X. To

simplify the extra hardware and guarantee proper operation, the 50 ns

period mentioned can be increased to one-half a clock period (62.5 ns

at 8 MHZ). This is also shown in Figure 29 and indicates that one-half

of potential main system delays have been eliminated by deciding con­

flicts in the period marked X in favor of the main system, and thus

reducing the interference load on the main system by 50%.

Fortunately the RAM cycles that have to be aborted with such a

technique are read cycles and not write cycles. Thus, the technique

is feasible and the extra hardware needed is expected to be simple.

It would be nice if a microprocessor were developed that had a

bus error feature as the MC68000 but without timing constraints. In

other words, if a bus error signal arrived anywhere during the bus

cycle, it would still cause the processor to repeat the bus cycle. It

might seem impractical to ask for such a microprocessor, but it is

actually not. Such a microprocessor would open a new era in multi-

microprocessor systems in general. It would simplify to a great extent

the controlling of access to shared resources by simply granting the

access to the first requester and causing all subsequent requesters

during the cycle to try again. It would also simplify dynamic priority

scheduling by allowing the highest priority processor free access to

a resource, while forcing the others to repeat their bus cycles should

a conflict arise. The priority can be changed dynamically by

www.manaraa.com

108

rearranging the access rights. This should result in a very efficient

utilization of a common resource since no arbitration time is needed

every cycle as is the case in conventional systems.

A zero load LRU module

Thinking about a microprocessor with a bus error feature as

described above leads to the idea of implementing the bus error feature

external to the microprocessor with some software help. The idea is

to allow the time recording process to start at any time without any

constraints, and at the same time let the microprocessor check the

correctness of its read cycle after its completion. Some hardware has

to detect the arrival of a time recording signal and tri-state all

RAM buffers on the microprocessor side. On the other hand, a special

signal that starts with the start of microprocessor RAM cycle and ends

Y clock period after the end of the cycle has to be generated and used

to set a special flip-flop whenever a time write signal arrives while

the mentioned signal is active. If the flip-flop is set, the micro'-

processor repeats the same cycle. If the flip-flop is found clear, the

microprocessor proceeds without need to repeat the read cycle. It is

possible that a certain cycle can be repeated several times before the

flip-flop is found clear. Since RAM long word instructions require

two consecutive word read cycles to the RAM, it is only possible to

repeat booth read cycles. In such a case, the flip-flop would be set

should a conflict occur during any of the two cycles.

Another alternative is to queue the filtered addresses at the sub-

module and pass addresses in a way similar to Direct Memory Access

www.manaraa.com

109

(DMA) operation.

An even simpler approach is to let the microprocessor perform

each RAM read instruction two consecutive times and then compare the

values read. If a match is found, it proceeds to the next instruction.

If no match is found, the process is repeated until a match is found.

One possible source of error in such a technique is that it is likely

that the microprocessor would read a tri-stated buffer as an all-ones

word. Thus, it is necessary to make sure that the matched words are

not all-ones words. Of course, other sources of error such as criti­

cal timing almost always exist and must be taken into consideration.

It might still be acceptable to have LRU submodules that produce

output at a four times slower rate than the one we built. In such a

case, the last approach, although slow, may be acceptable.

www.manaraa.com

110

CHAPTER VII. CONCLUSION

Since the operating system is a very costly part of a computer

system in terms of both the initial cost and the operational cost,

it has been found that an approach to support the operating system

using modern microprocessors is worth studying.

An approach to support and parallel process some operating system

functions has been introduced. The technique utilizes existing, inex­

pensive, and powerful microprocessors to support operating system

functions that lend themselves to parallel processing. The support

system consists of several modules, each of which performs some operat­

ing system function and communicates with the supported system through

a small, dedicated main memory area called a communication area. The

proposed technique is general and can be used to support systems under

design as well as systems in operation. It also can be utilized in

single processor, as well as multi-processor systems with shared memory.

The cost, reliability, and other aspects have been studied. Some possi­

ble advantages of applying the proposed technique can be summarized as

fol lows:

(1) It is possible to reduce the operating system CPU time re­

quirements by parallel processing many of its functions.

This is particularly attractive in the case of modularly

structured operating systems as most current systems are.

Reducing operating system CPU time requirements would mean

that more CPU time is available for productive work.

www.manaraa.com

I l l

It is possible to reduce operating system complexity by

adopting simpler functional algorithms. This is because in

many cases the designer is forced to design more complicated

algorithms merely to reduce the execution overhead. Since

the support approach has as a major concern the reduction

of the overhead, it is possible to go for simpler algorithms

which might perform better with support than more complicated

ones without support. This would reduce to some extent the

overall software complexity, and hence the overall system

initial cost.

It is possible to perform some tasks that are currently con­

sidered impractical because their overhead is unacceptable.

For instance, the exact implementation of the Least Recently

Used (LRU) replacement policy in demand paging memory manage­

ment systems is believed to be "not feasible" because of its

overhead.

Some support modules may be assigned monitoring and per­

formance measurement functions. These modules may then sub­

mit reports to the main system which uses the reports to

adjust dynamically or "fine tune" some operating system

parameters. Some of these parameters might be:

(a) Working set size,

(b) Page/sector size,

(c) Bus allocation scheme.

This would enhance system performance since the parameters

www.manaraa.com

112

are fine tuned to optimize the performance according to

actual working conditions on line rather than being fixed

at certain value during the design phase.

To prove, at least, some of the above-mentioned points, two specific

applications have been invented as examples. The first is a support

module for a deadlock avoidance scheme. In this application, theoreti­

cal study as well as a possible design of the module have been given.

The second application is the exact implementation of the Least Recently

Used replacement policy in a demand paging memory management system.

In this case, a submodule has been designed, built, and tested.

Since deadlock avoidance schemes incur high overhead, it has been

predicted that in the near future the deadlock problem will acquire

greater attention. This is especially true in systems sharing an

increasing number of individual users, and in systems which provide

a large set of files or data bases for many users with different access

rights. This is the motive behind considering deadlock avoidance schemes

as an application example of the proposed approach. Many deadlock

avoidance algorithms differing significantly in the degree of complexity

and in the amount of overhead incurred are already available. However,

in all cases the overhead gets unacceptable as the number of active

processes in the system, say (m), gets larger than some value.

Habermann's model is considered an extreme model because the amount of

advance information about process resource requirements is very small

compared to other algorithms [14, 17]. The algorithm is relatively

simple but its execution time is 0(m^), where m is the number of

www.manaraa.com

113

processes. As m gets larger than five, the overhead becomes unaccept­

able. The algorithm, however, is much simpler than many other

algorithms that trade simplicity for some overhead savings. Habermann's

algorithm was selected for modular microprocessor-based support just

to prove that simple algorithms can be supported to give better per­

formance than many other more complicated algorithms without the

support.

Design outlines for three support modules have been given. The

first module contains tiH-l microprocessors in which m microprocessors

serve the m processes and one microprocessor serves as a supervisor.

The module executes Habermann's algorithm with execution time 0(m)

instead of O(m^) without the support module. With support, the number

of processes can be increased to 25 and the overhead may still be

acceptable. Moreover, the algorithm is executed almost totally on the

support module alleviating almost completely the whole overhead problem

from the main CPU(s). If the amount of hardware in the support module

is considered unacceptably high, a process microprocessor could be

assigned say k processes instead of only one reducing the number of

required microprocessors to^+1. However, the execution time in

such a case is 0(km), where k is an integer greater than one. This

corresponds to the second support module presented. The third support

module is applicable only in systems with small m and has an execution

time 0(km), where k is a positive fraction. The module uses only one

microprocessor.

Thus, the first application example proves the practicality and

www.manaraa.com

114

feasibility of the support approach even when simple algorithms are

adopted. It also proves points 1 and 2 mentioned earlier in this

chapter when the possible advantages of the approach were discussed.

The second application example deals with the exact implementation

of the Least Recently Used (LRU) replacement policy. Theoretical and

simulation studies demonstrated the superiority of the LRU replacement

policy over all other practical replacement policies. However, it was

believed that the exact implementation of the LRU was "not feasible"

because of its tremendous overhead. Therefore, many systems tried to

approximate the LRU. The Least Frequently Used (LFU), and the second

chance or MULT ICS, are two examples of such approximations. The LFU

incurrs high overhead because the whole page table has to be searched

every time a page fault occurs. The MULTICS exhibits less overhead

than the LFU; however, it is still an approximation.

The author has described in detail the design of a microprocessor-

based module for the exact implementation of the LRU replacement policy

in a demand paging system. The idea is to divide main memory into n

equal areas and assign each area to a submodule that runs an exact LRU

routine to find out the LRU page frame address in its assigned area.

One TIMER for the whole module is utilized in recording reference times

to different page frames. Each submodule contains an MC68000 micro­

processor, ROM, RAM, buffering chips, and some control logic. The

microprocessor reads the routine from the ROM while the RAM stores the

reference time records of pages assigned to the submodule. Each sub-

module outputs the area LRU frame address along with its time record

www.manaraa.com

115

into some output latches. One supervisor submodule searches the out­

puts produced by other submodules and finds out the overall LRU frame

address. Moreover, the supervisor has to communicate with the main

system via a communication area. Thus, the LRU module is composed of

n+1 submodules with one microprocessor in each submodule.

An LRU submodule has been designed, built, and tested. The sub-

module uses the MC68000 microprocessor to run the exact LRU routine.

To test the submodule, it was essential to design an address stream

generation module. Another MC68000 microprocessor has been utilized

in building the address generation module. Three LRU routines and

four address generation routines have been designed to allow extensive

testing of the LRU submodule performance.

The LRU demonstrated good performance and produced correct outputs

less than 3 ms apart. The submodule was assigned 128 page frames and

ran at a frequency of 6 MHZ. It turned out that if the new 10 MHZ

version of the MC68000 were used, the outputs would be about 1.5 ms

apart. This would be a faster rate than most systems would need, and

increasing the number of page frames to 512 would cause the submodule

output rate to be about four times slower than the 128 page frames

case. This would still be acceptable in most systems because a modern

disk may take up to 10 ms to transfer a page to main memory [23].

The cost of a whole LRU module supporting a 1024 page frame memory

would be less than $3,000, which is almost negligible compared to the

cost of a multiprogramming computer system. The size of the LRU module

should be small enough to fit nicely inside a modern disk drive, making

www.manaraa.com

116

it a "smart disk."

The loading effect of the LRU module has also been discussed (main

system's delay because of the LRU module). It has been found that

any of several techniques could be used to reduce the loading effect

to zero.

www.manaraa.com

117

BIBLIOGRAPHY

1. Collins, S. D. In Infotch State of the Art Report on Operating
Systems, No. 14. Maidenhead, England: Infotch International,
England, 1972.

2. Baer, J. L. "Multiprocessing Systems." IEEE Trans, on Comp.
C-25, No. 12 (December 1976): 1271-1276.

3. Murakami, S., S. Nikishawa, and M. Sato. "Polyprocessor system,
analysis and design." SIGARCH Newsletter, 5, No. 1 (March 1977):
44-56.

4. Chow, Y. C., and W. H. Kohler. "Performance of several queuing
models for multiprocessor multiprogramming systems." Digest of
Papers COMPCON, Washington D.C. 13 (Fall 1976):66-71.

5. Gonzalez, M. J., and C. V. Ramamoothy. "Parallel task execution
in a decentralized system." IEEE Trans, on Comp. C-21, No. 12
(December 1972):1310-1322.

6. Hailstone, J. E. "Experience of operating system performance
measurement." In Infotch State of the Art Report on Operating
Systems, No. 14. Maidenhead, England: Infotch International,
England, 1972.

7. Srodawa, R. J. "Positive experiences with a multiprocessing
system." Computing Surveys, 10, No. 1 (March 1978):73-82.

8. Noguchi, K., I. Ohinishi, and H. Mori ta. "Design considerations
for a heterogeneous tightly-coupled multiprocessor system."
National Computer Conference, API PS Conf. Proc. 44 (1975):56l-565.

9. Nishikawa, S., M. Sato, and E. Murakami. "Interconnection unit for
poly-processor system: Analysis and design." SIGARCH Newsletter,
6, No. 7 (April 1978):2l6-222.

10. Anderson, G. L., and K. Bartlett. "Hardware allocation of data
system resources." Computer Design 13 (July 1974):89-97.

11. Holt, R. C. "Some deadlock properties of computer systems."
Computing Surveys, 4, No. 3 (September 1972):179-196.

12. Shoshami, A., and E. G. Coffman. "Prevention, detection, and
recovery from system deadlocks." Proc. 4th Annual Princeton
Conf. on Information Sciences and Systems, March 1970.

13. Hays, J. P. Computer Architecture and Organization. New York:
McGraw Hi 11 Book Co., 1978.

www.manaraa.com

118

14. Habermann, A. N. "Prevention of system deadlocks." COMM. ACM
12, No. 7 (July 1969):373-377.

15. Russel, R. D. "A model for deadlock-free allocation primary
version." Memo CGTM, No. 93^. Dept. of Computer Science, Stanford
Univ., June 1970.

16. Havender, J. W. "Avoiding deadlocks in multi-tasking systems."
IBM System J. 7, No. 2 (1968):74-84.

17. Habermann, A. N. Introduction to Operating System Design. Chicago:
SRA Inc., 1978.

18. Coffman, E. G. "Deadlocks in computer systems." Infotch State
of Art Report on Operating Systems, No. 14. Maidenhead, England:
Infotch International, 1972.

19. Coffman, E. G., and L. C. Varian. "Further experimental data on
the behavior of programs in a paging environment." COMM. ACM 11,
No. 7 (July 1968):471-474.

20. Belady, A. "A study of replacement algorithms for virtual storage
computers." IBM Sys. J. 5, No. 2 0966).

21. Bensoussan, A. "The MULT ICS virtual memory: Concepts and design."
COMM. ACM 15, No. 5 (May 1972):308-3l8.

22. MC68000 User's Manual. Austin, Texas: Motorola Semiconductor
Products Inc., 1980.

23. Baer, J. L. Computer System Architecture. Potomac, Maryland:
Computer Science Press, Inc., I98O.

www.manaraa.com

119

ACKNOWLEDGMENTS

I would like to deeply thank my major professor, Dr. Arthur V.

Pohm. His constant encouragement and personal kindness are deeply

appreciated and acknowledged.

I am very thankful to Professor Terry A. Smay for his invaluable

suggestions and discussions.

I also would like to thank Professors R. G. Brown, R. Lambert,

and D. Grosvenor for agreeing to serve on my committee.

I wish to express my deep appreciation to Professor Julius 0.

Kopplin, Chairman of the Electrical and Computer Engineering Department,

for providing the financial support during my study.

Finally, I would like to thank my mother and my wife for their

support.

www.manaraa.com

120

APPENDIX A. ROUTINE!

"68000"
9 EXACT LRU PROGRAM "ROUTINEl"

ORG 0000
HEX 000,2300,000,400 ;ALL ADDRESSES ARE IN HEX
HEX 000,ODOO,000,OEOO
ORG 400H

INIT MOVE.L #700H,SR ; INITIALIZE STATUS REGISTER
MOVE.L #0,A0
MOVE.L #22000H,A6 ; INITIALIZE A5 & A6 FOR
MOVE.L #22200H,A5 ; CLEARING ALL RECORDS.
CLR.L D7

LI MOVE.L D7,-[A5] ;CLEAR ALL 128 TIME RECORDS
CMPA.L A6,A5 ;IN THIS LOOP.
BNE LI
MOVE.L #2200H,A5 ; INITIALIZE AS TO HIGHEST ADD+4
MOVE.L #2000H,A6 ;AND A6 TO THE LOWEST ADDRESS.

SEARCH MOVE.L -[A5],D0 ; INITIALIZE THE SEARCH BY KEEPING
MOVE.W A5,A0 ;THE FIRST RECORD INTERNALLY.

NSRCH MOVE.L -[A5],D7 ;NORMAL SEARCH.
CMP.L D0,D7 ;IF NEW RECORO>OLD ONE: IGNORE IT
BHI TSTEND ;BY BRANCHING TO TESTEND.
MOVE.L D7,D0 ;KEEP NEW RECORD AND ITS ADDRESS.
MOVE.W A5,A0

TSTEND COMPA.L A5,A6 ;ALL 128 RECORDS SEARCHED ?
BNE NSRCH ;IF NOT : GO BACK TO NORMAL SEARCH

OUTPUT CMP.L [AO],DO ;CHECK VALIDITY OF LRU RECORD.
BNE ENDOUT ; IF NOT VALID : DO NOT OUTPUT.
MOVE.L A0,D4
LSR.L #1,D4
MOVE.W D4,4000H ;OUTPUT LRU FRAME ADDRESS.
MOVE.L D0,4010H ;OUTPUT ITS TIME RECORD.

ENDOUT MOVE.W #2200H,A5 ; REINITIALIZE A5
BRA SEARCH ;ALWAYS GO BACK TO THE NORMAL

; SEARCH.

ORG CDOOH ;BUS ERROR HANDLER.
BUSERR MOVE.L #0FFFFFFFFH,4010H

MOVE.L #400H,0CH[A7]
RTE

ORG OEOOH ;ADDRESS ERROR HANDLER.
ADDERR MOVE.L #0FFFFFFFFH,4010H

MOVE.L #400H,0CH[A7]

www.manaraa.com

121

APPENDIX B. R0UTINE2

; EXACT LRU PROGRAM "R0UTINE2
ORG OOOH
HEX 000,2300,000,400
HEX 000,0D)),000,0E00
ORG 400H

INIT MOVE.W #700H,SR
MOVE.L #0,A0
MOVE.L #0,A1
MOVE.L #0,A2
MOVE.L #22200H,A5
MOVE.L #22000H,A6
CLR.L D7

LI MOVE.L D7.-[A5]
CMPA.L A6,A5
BHI LI
MOVE.L #2200H,A5
MOVE.L #2000H,A6

SEARCH MOVE.L -[A5],D0
MOVE.W A5,A0
MOVE.L -[A5l,D7
CMP.L D0,D7
BHI L2
MOVE.L D0,D1
MOVE.W A0,A1
MOVE.L D7,D0
MOVE.W A5,A0
BRA NSRCH

L2 MOVE.L D7,01
MOVE.W A5,A1

NSRCH MOVE.L -[A5],D7
CMP.L D1,D7
BHI TSTEND
CMP.L D0,D7
BHI L3
MOVE.L D0,D1
MOVE.W A0,A1
MOVE.L D7,D0
MOVE.W A5,A0
BRA TSTEND

L3 MOVE.L D7,D1
MOVE.W A5,A1

TSTEND CMPA.L A5,A6
BNE NSRCH

; INITIALIZE STATUS REGISTER.
; CLEAR AO THRU A2.

LOAD A5 WITH HIGHEST ADDR+4.
LOAD A6 WITH LOWEST ADDRESS.
NOTE THAT AI? IS ACTIVE DURING
RECORD INITIALIZATION.
INITIALIZE ALL RECORDS TO ALL
ZEROS.
INITIALIZE A5 &A6 FOR READ.

READ FIRST TWO RECORDS AND
ORDER THEM SUCH THAT DO HOLDS
THE OLDER TIME RECORD WITH AO
HOLDING ITS ADDRESS.
D1&A1 SHOULD HOLD THE OTHER
RECORD AND ITS ADDRESS.

"NORMAL SEARCH"
READ RECORD INTO D7 AND COMPARE
IT WITH D1 IF IT IS HIGHER;
DISCARD IT. IF NOT HIGHER :
DISCARD D1 &A1 AND REORDER THE
LIST IN THE SAME WAY AS BEFORE.

;ALL 128 RECORDS SEARCHED?
;IF NOT GO BACK TO NSRCH.

www.manaraa.com

122

OUTPUT CMP.L [AO],DO CHECK THE VALIDITY OF THE
BNE L4 LRU RECORD. IF NOT VALID 60 TO
MOVE.L A0,D4 L4 TO CHECK THE OTHER RECORD.
LSR.L #1,D4 ONE BIT SHIFT RIGHT MAPS ADDR
MOVE.W D4,4000H TO INPUT STREAM AREA. OUTPUT
MOVE.L D0,4010H LRU ADDRESS AND TIME RECORD.
BRA ENDOUT GO TO ENDOUT.

L4 CMP.L [A1],D1 CHECK THE VALIDITY OF THE 2nd
BNE ENDOUT LRU RECORD :OUTPUT IF VALID.
MOVE.L A1,D4
LSR.L #1,D4
MOVE.W D4,4000H
MOVE.L D1,4010H

ENDOUT MOVE.W #2200H,A5 ; REINITIALIZE A5 AND GO BACK TO
BRA SEARCH ;START A NEW SEARCH

ORG ODOOH
BUSERR MOVE.L #0FFFFFFFFH,4010H ;BUS ERROR HANDLER.

MOVE.L #0400H,0CH[A7]
RTE

ORG OEOOH ;ADDRESS ERROR HANDLER.
ADERR MOVE.L #0FFFFFFFFH,4010H

MOVE.L #0400H,0CH[A7]
RTE

www.manaraa.com

123

APPENDIX C. ADDGEN1

"6800"
; ADDRESS GENERATION ROUTINE "ADDGEN1"

ORG OOOH
HEX 0000,2300
HEX 0000,0400 NOTE;ALL ADDRESSES ARE
ORG 400H IN HEXADECIMAL.
MOVE #0700H,SR INITIALIZE STATUS REGISTER
MOVE.L #1100H,A2 INITIALIZE A2 TO HIGHEST

INIT MOVE.L #1OOOH,AO ADDRESS IN THE LIST+2,
MOVE.W #5.D2 AND AO TO LOWEST ADDRESS.
MOVE.W #4,D3 D2 THROUGH D6 HOLD THE
MOVE.W #3,D4 No OF TIMES DIFFERENT
MOVE.W #2,D5 SEGMENTS ARE REPEATED.
MOVE.W #1.D6

SEGM1 MOVE.L #1030H,A1 "SEGMENTl"
MOVE.L #1060H,A3 ADDRESSES 1030,1060,AND
MOVE.L #1090H,A4 1090 WILL BE SKIPPED.

LOOPl MOVE.W [AO]+,DO
NOP
CMPA.W A0,A1
BNE LOOPl
ADD #02H,A0 ;SKIP 1030.

L00P2 MOVE.W [AO]+,DO
NOP
CMPA.W AO, A3
BNE L00P2
ADD #02H,A0 ;SKIP 1060.

L00P3 MOVE.W [AO]+,DO
NOP
CMPA.W AO, A4
BNE L00P3
ADD #02H,A0 ;SKIP 1090.

L00P4 MOVE.W [AO]+,DO
NOP
CMPA.W A0,A2
BNE L00P4
MOVE.L #1 OOOH,AO
DBNE D2,LOOPl ; EXECUTED 5 TIMES ?

SEGM2 MOVE.L #1072H,A3 ; "SEGMENT2"
MOVE.L #1010H,A1 ;ADDRESS 1010, AND 1072

LOOPS MOVE.W [AO]+,DO ;WILL BE SKIPPED IN THIS
NOP ;SEGMENT.
CMPA.W A0,A1
BNE LOOPS
ADD #02H.A0 ;SKIP 1010.

www.manaraa.com

L00P6 MOVE.W [AO]+,DO

NOP
CMPA.W AO, A3
BNE L00P6
ADD #02H,A0 ; SKIP 1072.

LOOP? MOVE.W [A0]+,D0
NOP
CMPA.W A0,A2
BNE LOOP?
MOVE.L #1000H,A0
DBNE D3,LOOPS EXECUTED 4 TIMES ?

SEGM3 MOVE.L #10F8H,A1 "SEGMENT 3"
LOOPS MOVE.W [AO]+,DO IN THIS SEGMENT lOFS AND lOFA

NOP WILL BE SKIPPED.
CMPA.W A0,A1
BNE LOOPS
add #04H,A0 ;SKIP 10F8 & 10FA.

L00P9 MOVE.W [A0]+,D0
NOP
CMPA.W A0,A2
BNE LOOPS
MOVE.L #1000H,A0
DBNE D4,LOOPS EXECUTED 3 TIMES ?

SEGM4 MOVE.L #1016H,A1 SEGMENT4.
MOVE.L #10A6H,A3 HERE 1016 S 10A6 WILL BE

LOOP10 MOVE.W [AO]+,DO SKIPPED.
NOP
CMPA.W A0,A1
BNE L00P10
ADD #2H,A0 ;SKIP 1016.

LOOP11 MOVE.W [A0]+,D0
NOP
CMPA.W AO, A3
BNE LOOP11
ADD #02H,A0 ;SKIP 10A6.

LOOP12 MOVE.W [A0]+,D0
NOP
CMPA.W A0,A2
BNE L00P12
MOVE.L #1000H,A0
DBNE D5,LOOP10 EXECUTED 2 TIMES?

SE6M5 MOVE.L #10c2H,A1 SEGMENTS.
LOOP13 MOVE.W [AO]+,DO HERE 10C2 WILL BE SKIPPED.

NOP
CMPA.W A0,A1
BNE L00P13
ADD #2H,A0 ;SKIP 10C2

www.manaraa.com

125

LOOP14 MOVE.W
NOP
CMPA.W
BNE
MOVE.L
DBNE
BRA

[AO]+,DO

A0,A2
LOOP14
#1000H,A0
D6,LOOP13
INIT

;D0 NOT REPEAT SEGMENTS-
;G0 TO INIT TO REPEAT ALL OVER.

www.manaraa.com

126

APPENDIX D. ADDGEN2

"6800"
9

INIT

SEGMl
LOOPl

L00P2

SE6M2
L00P3

L00P4

ADDRESS GENERATION ROUTINE "ADDGEN2" .

;ALL ADDRESSES ARE IN HEX.

; INITIALIZE STATUS REGISTER.

D2 THRU D6 CONTROL THE No. OF
TIMES SEGMENTS 1 THRU 5 ARE
EXECUTED.

"SEGMENT!".
IN THIS SEGMENT ADDRESS 1030
WILL BE SKIPPED.
NOTE THAT 3 NOP INSTRUCTIONS
ARE USED TO SIMULATE SLOWER
ADDRESS ARRIVAL RATE AT THE
LRU SUBMODULE.
SKIP 1030.

SEGM3

ORG OOOH
HEX 0000,2300
HEX 0000,0400
ORG 400H
MOVE #0700H,SR
MOVE. L #1100H,A2
MOVE. L #1OOOH,AO
MOVE. W #5,D2
MOVE. W #3,D3
MOVE. W #3,D4
MOVE. W #2,D5
MOVE. W #4,D6
MOVE. L #1030H,A0
MOVE. W [A0]+,D0
NOP
NOP
NOP
CMPA.W A0,A1
BNE LOOPl
ADD #02H,A0
MOVE. W [AO]+,DO
NOP
NOP
NOP
CMPA. ,W A0,A2
BNE L00P2
MOVE. .L #1OOOH,AO
DBNE D2,LOOPl
MOVE .L #1072H,A1
MOVE. .W [A0]+,D0
NOP
NOP
NOP
CMPA .W A0,A1
BNE L00P3
ADD #04H,A0
MOVE .W [A0]+,D0
NOP
NOP
NOP
CMPA .W A0,A2
BNE L00P4
MOVE .L #1OOOH,AO
DBNE D3,LOOP3
MOVE -L #10F8H,A1

EXECUTED 5 TIMES?
"SEGMENT2".

HERE 1072 61074 WILL BE
SKIPPED.

;SKIP 1072 61074.

;EXECUTED 3 TIMES ?
; "SEGMENT3".

www.manaraa.com

127

LOOPS

L00P6

SEGM4
L00P7

LOOPS

SEGM5
L00P9

LOOP10

MOVE.W [AO]+,DO
NOP
NOP
NOP
CMPA.W A0,A1
BNE LOOPS
ADD #06H,A0
MOVE.W [A0]+,D0
NOP
NOP
NOP
CMPA.W A0,A2
BNE LOOPS
MOVE.L #1000H,A0
DBNE D4,LOOPS
MOVE.L #1016H,A1
MOVE.W [AO]+,DO
NOP
NOP
NOP
CMPA.W A0,A1
BNE L00P7
ADD #2H,A0
MOVE.W [AO]+,DO
NOP
NOP
NOP
CMPA.W A0,A2
BNE LoopS
MOVE.L #1000H,A0
DBNE DS,L00P7
MOVE.L #10C2H,A1
MOVE.W [A0]+,D0
NOP
NOP
NOP
CMPA.W A0,A1
BNE LOOPS
ADD #2H,A0
MOVE.W [AO]+,DO
NOP
NOP
NOP
CMPA.W A0,A2
BNE LOOP10
MOVE.L #1000H,AO
DBNE D6,LOOP9
BRA INIT

HERE 10F8,10FA, AND lOFC WILL
BE SKIPPED. THE SEGMENT WILL
BE REPEATED THREE TIMES.

;SKIP 10F8,10FA&10FC.

EXECUTED 3 TIMES ?
"SEGMENT 4".

HERE ONLY 1016 WILL BE SKIPPED
AND THE SEGMENT WILL BE REPEATED
TWO TIMES.

EXECUTED 2 TIMES?
"SEGMENTS".

ONLY 10C2 WILL BE SKIPPED,
AND THE SEGMENT WILL BE
REPEATED 4 TIMES.

; EXECUTED 4 TIMES?
;REPEAT ALL 5 SEGMENTS.

www.manaraa.com

APPENDIX E. ADDGEN3

"68000"
; ADDRESS GENERATION ROUTINE "ADDGEN3".

ORG OOOH
HEX 0000,2300 ALL ADDRESSES ARE IN HEX.
HEX 0000,0400
ORG 400H
MOVE #0700H,SR INITIALIZE STATUS REGISTER,
MOVE.L #n00H,A2 SET A2 TO HIGHEST ADDRESS+2.

INIT MOVE.L #1OOOH,AO SET AO TO LOWEST ADDRESS,
MOVE.W #5,D2 D2 THRU DS WILL CONTROL THE
MOVE.W #3,D3 No OF EXECUTIONS OF SEGMENTl
MOVE.W #3,D4 THRU SEGMENTS RESPECTIVELY.
MOVE.W #2,D5
MOVE.W #4,D6

SE6M1 MOVE.L #1030H,A1 "SEGMENTl".
LOOPl MOVE.W [A0]+,D0 IN THIS SEGMENT ADDRESS IO3O

CMPA.W A0,A1 ONLY WILL BE SKIPPED.
BNE LOOPl
ADD #02H,A0

L00P2 MOVE.W [A0]+,D0

CMPA.W A0,A2
BNE L00P2
MOVE.L #1OOOH,AO
DBNE D2,LOOPl EXECUTED S TIMES ?

SEGM2 MOVE.L #1072H,A1 "SEGMENT2".
L00P3 MOVE.W [A0]+,D0 HERE 1072 AND 1074 WILL BE

CMPA.W A0,A1 SKIPPED.
BNE L00P3
ADD #04H,A0 ;SKIP IO72&IO74.

L00P4 MOVE.W [AO]+,DO
CMPA.W A0,A2
BNE L00P4
MOVE.L #1OOOH,AO
DBNE D3,LOOP3 ; EXECUTED 3 TIMES ?

SEGM3 MOVE.L #10F8H,A1 ; "SEGMENT3"
LOOPS MOVE.W [AO]+,DO

CMPA.W A0,A1
BNE LOOPS
ADD #06H,A0 ;SK1P 10F8,10FA,10FC.

LOOPS MOVE.W [AO]+,DO
;SK1P 10F8,10FA,10FC.

CMPA.W A0,A2
BNE L00P6
MOVE.L #lOOOH,AO
DBNE D4,LOOPS ; EXECUTED 3 TIMES?

SEGM4 MOVE.L #1016H,A1 ; "SEGMENT4".

www.manaraa.com

129

LOOP? MOVE.W [AO]+,DO
CMPA.W A0,A1
BNE LOOP?
ADD #2H,A0 ;SKIP 1016.

LOOPS MOVE.W [AO]+,DO
CMPA.W A0,A2
BNE LOOPS
MOVE.L #1000H,A0
DBNE 05,LOOP? ; EXECUTED 2 TIMES ?

SEGM5 MOVE.L #10C2H,A1 "SEGMENTS"
L00P9 MOVE.W [AO]+,DO

CMPA.W A0,A1
BNE LOOP9
ADD #2H,A0 ;SKIP 10C2.

LOOP10 MOVE.W [AO]+,DO
CMPA.W A0,A2
BNE LOOP10
MOVE.L #100H,A0
DBNE D6,L00P9 ;EXECUTED 4 TIMES ?
BRA INIT ; REPEAT ALL SEGMENTS

	1983
	Microprocessor based modular support for an operating system
	Ahmed Amin Elamawy
	Recommended Citation

	tmp.1415122282.pdf.ODodM

