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CHAPTER I. INTRODUCTION 

It was estimated in 1972, that every 5% more facility put into a 

computer system cost 20% more to achieve, which represented a rapidly 

rising cost curve [1]. This was mainly due to the need for a more com­

plex operating system. 

The complexity of an operating system designed for a multiprocessor 

system is usually greater than that designed for a single processor 

system [2]. In the general-purpose multi-arithmetic logical unit 

configuration, the difficulty is mainly in the implementation of an 

integrated control within the operating system. For example, synchroniza­

tion, task splitting, and scheduling are areas where the presence of 

more than one processing unit increases the supervisor's complexity. 

As is well-known, most of the computer system's cost goes to the 

software design, especially the operating system. A strong, fast-rising 

relationship between the complexity of the operating system and the total 

system cost mandates the need for a more efficient utilization of cur­

rent technology to support the operating system. It is important to 

notice that a more complex operating system not only means a higher 

system cost, but also means, a larger percentage of the processing power 

devoted to executing the operating system code. Thus, the existence of 

powerful, fast, inexpensive microprocessors makes it worthwhile to study 

the possibility of utilizing current technology to support the execution 

of some operating system functions. This is especially attractive in 

the case of a modular, structured, operating system because a high 
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degree of parallel operating system processing should be achiev­

able. 

Extensive studies have shown that a computer system formed by 

interconnecting many small micro or mi ni processors achieves a better 

cost/performance ratio and higher reliability than a powerful, large, 

and complicated single processor system [3, 4, 5]. This concept is 

appealing, not only at the computer system level, but possibly at the 

operating system level. If we can look at the operating system by it­

self as a system, we may think about the possibility of multiprocessing 

some of its functions, especially those that lend themselves to 

parallel processing. Multiprocessing of operating system functions 

using inexpensive VLSI chips is the subject of this dissertation. To 

prove the point, a submodule for the exact implementation of the least 

recently used replacement policy in a demand paging system was designed, 

built, and tested. This work is described in the various chapters of 

the dissertation as noted below. 

Chapter II has been devoted to reviewing some related literature. 

In Chapter III, an approach for supporting an operating system has been 

introduced. In Chapter IV, a specific example of a support module for 

a deadlock avoidance scheme has been described along with its related 

literature review. Chapter V contains a detailed description of the 

design of a module to implement the exact least recently used replace­

ment policy. Also in Chapter V, the description of a submodule that was 

designed, built, and tested is given along with the least recently used 

routine, hardware circuit, and test circuit details. The data obtained 
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from testing the submodule along with some remarks and comments are 

given in Chapter VI. Chapter VII contains the conclusion. 
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CHAPTER II. LITERATURE REVIEW 

The amount of literature dealing with the subject of microprocessor 

based support for an operating system is very limited. However, some 

publications can be related to this subject in a broad sense. These 

will be reviewed in this chapter. Since Chapters IV and V will pro­

vide specific application examples, it is more appropriate to review 

their related literature in those chapters. 

A study in 1972 provided an example of operating system measure­

ments and indicated the need for better hardware assistance in monitor­

ing and adjusting the operating system performance [6]. Afterwards, 

multiprocessing systems and their operating systems were subjected to 

extensive research. It was found that multiprocessing systems achieved 

a better cost/performance ratio and better reliability than single 

processor systems [3, 4, 5]. One study used analytical and numerical 

techniques to compare job turnaround time and throughput rate of three 

multiprocessor system models with that of a single central processing 

model of equal processing rate [4]. The results indicated that multi­

ple slow processors may sometimes be used to replace a fast central 

processor without significant performance degradation. The investigator 

concluded that this would be increasingly attractive as the cost of 

microprocessors continued to decrease. An interesting paper published 

in 1977 discussed different multiprocessor systems and envisioned two 

main types of control in multiple instruction multiple data (MIMD) 

architecture [2]. The first was fixed mode, in which one or more 

processors were dedicated to execute the operating system. When some 
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other processor terminated its task, or when all other processors 

were busy and a higher priority task had to be initiated, it was the 

responsibility of the dedicated processor(s) to schedule, terminate, 

and/or initiate processes. An advantage of such a scheme is that a 

special purpose hardware can be embedded in the design, hence decreas­

ing the executive's overhead. The other type of control was the float­

ing control mode. In this mode, each processor could have access to 

the operating system and could schedule itself. This mode had a reli­

ability advantage over the fixed mode. The investigator concluded that 

despite the decreasing cost of hardware due to large scale integration, 

the increased complexity in communication and the overhead in the 

operating system should be taken seriously when thinking about 

distributed function systems. The investigator also suggested that the 

challenging problems in the design of coherent architectures of viable 

and efficient operating systems, and in the inclusion of evaluating 

tools both during the design process and in the completed system itself, 

would restrict for some time the range of useful systems. 

Although it has become an established fact for many applications 

that multiprocessor systems are superior to single processor systems 

in terms of the cost/performance ratio despite the increased operating 

system complexity, it is not clear whether a homogeneous architecture 

is better to adopt. Apparently, homogeneous systems have some 

advantages in terms of reliability and design simplicity [7], whereas 

heterogeneous architectures have the merits of flexibility and per­

formance improvement with appropriate load sharing [8]. 
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A very interesting system with strong relationship between hard­

ware architecture and the operating system architecture was described 

in 1977 [3» 9]. The system was called Poly-Processor System (PPS). 

The system was developed for time sharing services and consisted of a 

processor subsystem, a memory subsystem, and a connection subsystem. 

The processor subsystem consisted of a number of functionally special­

ized processors, which covered six functional classes. The set of func­

tions for each processor class corresponded to the partitioning of con­

ventional operating system functions. Furthermore, the functions of 

each processor class were divided into functionally specialized sub­

classes and each of six processor classes consisted of many sub-

processors or modules. The memory subsystem consisted of six memory 

classes, which were categorized according to the behavior and character­

istics of stored information. These classes were introduced to add 

changeability to the functions of processors, to prevent errors from 

spreading, and to reduce the memory access conflicts. Since the reli­

ability of the system was affected by rigidly assigning the functions to 

the processor, a dynamic microprogramming technique was used to move a 

process from a failed processor to a processor that had at least as much 

connection as the failed processor. 

The most important issue in the design of such a multiprocessor 

system as the PPS was to devise a connection subsystem between proces­

sors and memory modules that would be effective for highly parallel and 

closely cooperative processing, in order to achieve parallel processing, 

information, i.e. programs and data used in the system, was divided into 
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three categories: private information, command data, and shared data. 

Private information was stored in a memory provided exclusively for 

each processor. Command data which were used to initiate a program 

in another processor such as requests, inquiries, and answers, were 

transferred directly between processors. Shared data were stored in 

a memory shared by several processors. For command data and shared 

data, two different connection modules were provided; the interproces-

sor connection module used a common bus technique, and the processor-

memory connection module used a crossbar switch technique. 

Extensive studies of the PPS system pointed out the validity of 

relating the hardware architecture to the operating system structure 

[3, 9]. However, the system suffered some drawbacks which were noted 

by the authors who described and studied the system's performance. 

These drawbacks can be summarized as follows: 

(1) The system was inflexible since it was hard to modify and 

expand. 

(2) The system was tailored to fit a time-sharing service giving 

no potential for applicability in other system environments. 

(3) Reliability was relatively limited by the small number of 

processors connected to main memory. 

(4) System cost increased largely because of implementing the 

interprocessor class. 

(5) System performance was degraded by the command data trans­

mission overhead. 

However, the PPS-related studies certainly established a good 
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background in searching for other approaches. 

It is appropriate to conclude the literature review by remarking 

that there should be ways to support and multiprocess operating system 

functions regardless of the hardware architecture. It should be possi 

ble to apply many concepts whether the supported system is a single or 

multiprocessor system. 

Additional literature will be reviewed in Chapters IV and V when 

specific operating system support examples are to be introduced. 
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CHAPTER III. MODULAR MULTI-MICROPROCESSOR BASED 

SUPPORT FOR AN OPERATING SYSTEM 

On the average, 10-30% of a computer system's processing time is 

spent in executing operating system-related activities [6]. This not 

only represents an overhead in terms of central processing unit time, 

but can also be viewed as a load on other system resources such as 

main memory and shared buses, thus limiting the system performance. It 

can be said that in some way it is wasteful to execute some operating 

system functions on a main processor or processors. The data provided 

on the PPS system performance indicated that, on the average, 12 bytes 

of command data passed to an operating system module every 250 accesses 

by another processor [3]* The command data were used to initiate a 

program in another processor. It consisted of command code codes and 

parameter words which specified the program execution details. This 

was the case when only six modules were incorporated. If the number of 

modules has been increased such that every module became responsible 

for only one function, one would have expected a transaction size to be 

less than 12 bytes (no need for command code). Moreover, the inter-

processor communication period could have been much longer. 

An approach that might provide better cost/performance ratio will 

now be described. The approach is general enough so that it is appli­

cable to different system architectures. The idea is to use as many sup­

port modules for the operating system as needed. Each module contains 

one or more microprocessors. The operating system may be viewed as com­

posed of two parts: (1) A software part residing in main memory; and 
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(2) A microprocessor-based modular support part. 

Communication between the two parts is carried out through dedi­

cated, relatively small, reserved areas of main memory space. This is 

shown in Figure 1. The communication area of a module is also a part 

of the module's memory space and is accessible by both the main system's 

processor(s) and the module's microprocessor(s). The rest of the 

module's memory is private to the module and is only accessible by some 

or all the microprocessors (if more than one microprocessor is utilized 

in the module). This kind of architecture makes the Idea applicable to 

a wide spectrum of system architectures. This occurs because common 

memory accessible by the main system processor(s) almost always exists 

in tightly coupled multiprocessor systems and certainly in single 

processor systems. Consider, for example, a single bus homogeneous 

multiprocessor system supported by a modular heterogeneous multi-

microprocessor system as shown in Figure 2. Different aspects regarding 

the design and performance of such a system can now be pointed out. 

Support Modules 

Each support module consists basically of: 

(1) One or more microprocessors; 

(2) A private memory; and 

(3) A communication memory accessible from the main system bus 

and a dedicated bus connected to the microprocessor(s). 

The private memory is generally larger than the communication area and 

can be slower. The former need only match the microprocessor's speed, 

while the communication memory has to be fast enough to match main 



www.manaraa.com

11 

MAIN 
SYSTEM 
PROCESSOR(S) 

\r-y 

I COMM. AREAS 

SW OS PART 

MODULE 1 

MODULE N 

MAIN MEMORY SUPPORT SYSTEM 

Figure 1. Communication technique between the support system and the 
main system 

PROCESSOR PROCESSOR PROCESSOR 

MAIN BUS 

MODULE 1 
MODULE 2 

COMM. AREAS 

MODULE N 
MAIN MEMORY SUPPORT 

SYSTEM 

Figure 2. A homogeneous main system supported by a heterogeneous 
modular support system 
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system's processor(s) speed. Some advantages of such an organization 

are: 

(1) Memory space, as seen by the main system, is much less than 

the actual memory space used by the module to process a 

function. 

(2) Slower, hence cheaper, private memory is used to execute 

operating system functions. However, the overall system 

speed may improve because functions will be executed in 

parai lei. 

(3) Module demand on main system resources is minimum, leaving 

more resources such as central processing unit time, main bus, 

memory space, etc., for productive work. 

Different kinds of microprocessors may be used in different modules. The 

selection of a certain kind for a module should be dependent on the func­

tion to be performed, as well as the characteristics of the microproces­

sor. The number of micros in a certain module should depend on the fre­

quency the module is invoked, as well as the nature and length of the 

function. Some modules might have to perform jobs like monitoring func­

tions or performance measurement. Such modules would have to submit a 

report to the main system which uses the report either to dynamically 

adjust some operating system parameters, or to help some operating 

system functions such as the implementation of the exact least recently 

used replacement p>olicy in a demand paging system. In such cases, the 

number microprocessors would depend on the arrival or event rate as well 

as the code execution time of a microprocessor's routine. 
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Relîabi1îty 

Because of the specialized nature of the modules, it might seem 

that there is a reliability problem. However, many techniques to improve 

the reliability of the support system are available; for instance, 

redundancy within a module, or redundancy at the module level, may be 

implemented at some insignificant cost. Besides, an extra microproces­

sor per module can be employed to perform supervisory and status check­

ing functions of the other elements. In case of a microprocessor 

failure, the supervisor micro may take over its job and inform the main 

system about the problem. Redundancy at the module's level might also 

be feasible because of the low cost of microprocessors and of hardware 

in general. 

Another interesting idea that could enhance both reliability and 

flexibility is to use a pool of microprocessors which are assigned func­

tions dynamically. This idea was Implemented in designing a file 

storage/retrieval system by Trans-A-File Co. [10]. The system used a 

set of microprogrammed microprocessors to perform a wide variety of 

tasks that were dynamically allocated to it. The control programs were 

stored on a tape and transferred upon allocation of a task to a micro­

processor's memory. The trade-off in the design was mainly the response 

time required to reconfigure the system. However, in our case the idea 

may be utilized in the suggested support system to assign the function 

of a failed module to a stand-by module. 

An idea that can result in a very reliable system is to store all 

module function codes in secondary memory. In case of module's failure. 
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its corresponding code is transferred to the main memory and is 

temporarily executed by the main system processor(s) without support. 

Cost 

With the constant decline in the cost of powerful microprocessors 

and hardware in general, it is feasible to use the brute-force approach 

which employs a large number of microprocessors to perform some func­

tion. For example, the author designed and built a part of a module 

(submodule) for implementing the exact least recently used replacement 

policy in a demand paging memory management system with a hardware cost 

around $300. Two MC68000 microprocessors at $104 each were employed for 

both testing and implementing the desired function. If a whole module 

is to be built of eight submodules, only nine microprocessors would be 

needed and the total cost of hardware should be less than $3,000. This 

figure is considered very small compared to the total cost of a multi­

programming computer system, and is nearly negligible. 

Other Aspects 

Some of the operating system functions may not lend themselves to 

parallel processing or to the idea of support. However, many functions 

do lend themselves very well to parallel or support processing. These 

include housekeeping work, scheduling, and monitoring functions. Some 

examples are sorting and maintaining lists, priority updating, deadlock 

avoidance-detection schemes, memory replacement algorithms, preparing 

compaction addresses in segmentation systems as well as finding enough 

space for incoming segments, job dispatching in multiprocessor systems. 
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and dynamic bus allocation in multi-bus architectures. 

In the next chapter, we will give a specific example of a support 

module for a deadlock avoidance scheme. In Chapter V, the description 

of a module for exact implementation of the least recently used algorithm 

will be discussed, along with the detailed design of a submodule that 

was actually built and tested. 
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CHAPTER IV. SUPPORT MODULE FOR A DEADLOCK AVOIDANCE SCHEME 

Introduction 

Having introduced a general approach to support an operating 

system using multi-microprocessor based modules, we are now ready to 

give the first of two specific examples. The second will be given in 

the next chapter. 

Before introducing our suggested support module for deadlock 

avoidance schemes, it is appropriate to review briefly some related 

1iterature. 

One of the operating system functions is to allocate system re­

sources to competing processes. The allocation scheme is usually de­

signed to take care of the possibility of deadlocks. One way a deadlock 

occurs is when a process holding some resource has to wait for a resource 

held by another process, while the latter is also waiting for the 

former to release a resource it holds. Three possible methods to 

handle deadlocks are available. Each has its own merits and demerits. 

These methods are: 

(1) Deadlock detection and removal; 

(2) Deadlock prevention, and 

(3) Deadlock avoidance. 

Detection algorithms can detect a deadlock that has already occurred 

and they then try to find a minimum cost way to remove it by deallocating 

some resources [11, 12]. This approach has the disadvantage of a high 

time penalty if the resources to be deallocated are non-preemptive. 

Moreover, the cost of running a detection and removal algorithm in terms 
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of overhead is high, especially if the deadlocks occur frequently. 

An algorithm is said to have time complexity 0(f(n)) if the number 

of steps it needs to process data of "size" n is cf(n), where f(n) is 

some function of n and c is a constant [13]. The time complexity of 

the algorithm provides an approximate indication of the time required 

to execute it on some computer. 

One of the well-known detection algorithms is O(mn^), where m is 

the number of resource types and n is the number of tasks [14]. Another 

algorithm that represents less overhead is 0(mn), where m and n are as 

defined above. However, this latter algorithm requires two ordered 

lists which implies some extra overhead [11, 12]. 

A more general technique assigns a fixed cost c. to the removal 

(forced preemption) of a resource of type r. from a deadlocked task 

that is being aborted [12]. The algorithm finds a subset of resources 

that would remove a deadlock at minimum cost. 

In general, all detection algorithms insure high supervisor over­

heads as well as swapping or I/O losses. 

Prevention techniques are, in general, designed to exclude the 

possibility of a deadlock by removing one or more of the conditions 

necessary for a deadlock to occur. Three different approaches are sug­

gested for the prevention of a deadlock [15» 16]. Nonetheless, each 

approach has a major disadvantage. The disadvantage of the first 

approach is poor utilization of system resources by allocating all 

resources a process needs all at once before it starts execution. 

The second approach suffers from the losses due to allowing preemption. 
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The last approach incurs supervisor overhead and poor utilization of 

resources. 

All avoidance techniques use advance information about process 

resource requirements. Different models have been developed, each of 

which is different in the amount of information assumed available. 

Two extreme models will shortly be discussed, intermediate models 

moderating the drawbacks of the extremes are available. The extreme 

models are usually simpler, less complicated than others but not neces­

sarily better in terms of overhead. However, simple algorithms may be 

best suited for microprocessor based support which would take care of 

the overhead problem, such that main system resource demand could be 

less than that needed by a fairly complicated algorithm without support. 

This should be considered an advantage, since simple algorithms with 

high overhead tend to reduce software complexity, and hence overall 

system cost. The support hardware would eliminate the overhead penalty. 

In other words, we don't have to design more complicated algorithms to 

reduce the overhead; the support system will take care of that. 

The first extreme model is the basic model. It assumes the avail­

ability of full information (which is impractical). The model consists 

of a sequence of process steps; during each step the resource usage 

remains constant. At the beginning of each step, an algorithm is 

invoked to determine whether the allocation of the requested resources 

is safe or not. The state of the system at time "t" relates requested 

and allocated resources. If it is possible to find a valid sequence of 

the uninitialized process steps such that all processes in the system 
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can run to completion, the state is safe; otherwise, the state is not 

safe. This model is clearly impractical and implies high overhead 

since the algorithm has to run before every process step can execute. 

The second model is more practical [14, 1?]. It assumes that only 

the maximum number of resources needed by each process at any time 

during its execution is known. In particular, each process has a 

resource vector. Each element in a resource vector represents the 

maximum number of a certain resource type that will be required by the 

process at any time during its execution. The algorithm utilizes an 

unordered list of vectors, each of which represents the rank of a 

process. The rank of process (i) is defined as the difference between 

the claim vector Cj and the allocation vector a. (a. represents the 

already allocated resources). The algorithm checks the safety of a 

request by trying to find a sequence in which a process can run to 

completion if the request is granted; otherwise, the request is denied. 

Fortunately, there is no need for backtracking with this algorithm [17]. 

However, the algorithm is 0(m ), where "m" is the number of processes 

in the system. As "m" gets larger than five,the algorithm's overhead 

becomes unacceptable. 

Another available algorithm is Ofm&ggm) [11]. It utilizes a 

heapsort of the list. However, the algorithm described in [17] will 

be considered just to prove that even simple algorithms can be sup­

ported to execute at a better speed than more sophisticated ones. 
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The Need for Hardware Support 

As might have been already noticed, the overhead incurred in 

deadlock related algorithms is a major concern in designing this part 

of the operating system. It has been predicted that in future systems 

sharing an increasing number of individual users, the deadlock problems 

are likely to acquire greater significance [18]. It has been also pre­

dicted that systems which provide a common set of large files (or data 

bases), available for many users with different access rights, will 

consider an access to a small subset of records as a resource usage. 

Based on the above, it seems appropriate to consider a hardware 

support module for this important part of the operating system. 

The Support Module 

The support module that will be presented is capable of reducing 

to a large degree the amount of overhead encountered in traditional 

deadlock avoidance schemes. The idea can also be extended to work with 

detection or prevention algorithms. For the sake of an example, 

Habermann's model for deadlock avoidance will be adopted [14, 1?]. In 

order to understand the function and operation of the module, a brief 

description of the algorithm follows. 

The vector rank, represents the state of process (i) according 

to the relation 

rank. = Cj - a. 

where c. is the claim vector of process (i) and a. is its current 
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allocation. Every element of the vector represents a resource type. 

A system vector "rem" (for the entire system) represents the remaining 

number of unallocated resources of all resource types. Upon a request 

by a process for resource allocation, the algorithm tries to find a 

sequence in which all processes can run to completion if the request 

is granted by searching an array that has all process state vectors 

[rank, iel, 2, ..., n] as elements. The array is unordered and the 

search time is 0(m ), where m is the number of processes currently 

holding or requesting resources, it can be proven that backtracking is 

unnecessary because if an nth process can be found to satisfy the 

relation 

rank. ̂  rem + ^ a. 
' j<î J 

while an (n+l)st process cannot be found to satisfy the (n+l)st rela­

tion; the allocation is not safe [17]. 

The support module employs a number of microprocessors plus some 

necessary hardware. The number of microprocessors is somewhat arbi­

trary and can be chosen to fit a desired speed, it is possible to 

execute Habermann's model as 0(km) instead of O(m^), where k is an 

arbitrary speed factor that also defines the number of microprocessors 

needed and, consequently, the amount of hardware. It is worth mention­

ing that the support idea makes it feasible to apply Habermann's model 

for systems with m > 5 which were supposed to have a prohibitive over­

head. 
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0(km) module, k = 1 

This kind of module is feasible only when m is not very large. 

However, acceptable values of m can be much larger than 5 and m=30 

could be considered reasonable (m is directly related to the degree of 

multiprogramming). In any case, m is limited by the number of non-

preemptive resources. 

The module contains a total of (m+1) microprocessors of which m 

microprocessors are to serve the m processes in the system. One micro­

processor will serve as the module's supervisor. A microprocessor that 

represents a process will be called a process micro. It must be men­

tioned that the number of active processes in the system will vary with 

time; however, the number of process micros can be selected as the 

maximum number of active processes allowed by the system at any given 

time. Another possibility is to select the number statistically, such 

that the probability that a process gets blocked because there is no 

process micro available is less than some small value, in such a case, 

the correspondence between a process and a microprocessor would be vari­

able with time and it is the responsibility of the supervisor to assign 

processes to microprocessors. Figure 3 shows the organization of the 

module. A small bus is utilized to connect all the microprocessors 

within the module, while all communication between the main system and 

the module is done through a small area of main memory space accessible 

only by the supervisor. 

Associated with process micro (j) are two flags 'ok^' and 'out of 

SRCHj'. Also, three external registers, Rlj, R2j, R3j, are associated 
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with process micro (j) (jel, 2, ...» m). Rlj and R2j will be used as 

communication buffers between the microprocessors within the module; 

therefore, they should occupy the same locations in all microprocessors' 

address space. R3j will act as a status and control register. All 

registers are private to the module's memory space and are not accessi­

ble by the main system. The function of the two flags associated with 

each process micro will be discussed when the operation of the module is 

to be introduced. 

Two modes of operation control the local bus. These modes are 

parallel write and addressed read/write. Part of the address on the bus 

defines the mode of the bus cycle. Registers Rlj (jel, 2, —, m) will 

always be written into simultaneously through a parallel write cycle 

initiated by the supervisor and, hence, they should only occupy bl bytes 

of its address space, where bl is the number of bytes in R1. This also 

applies to registers R2j (jel, 2, m) except that any microprocessors 

in the module can initiate a parallel write into them. Registers R3j 

(jel, 2, ..., m) are to be addressed separately only by the supervisor, 

and hence occupy mb) bytes of its address space, where b3 is the number 

of bytes in R3. Registers Rlj (jel, 2, m) will be used to receive 

supervisor messages, while registers R2j (jel, 2, m) will be used 

to store the rem vector after each search step. As mentioned before, 

registers R3j (jel, 2, ..., m) are to represent control/status registers 

for the process micros. 

Operation The supervisor microprocessor continuously monitors 

the communication area looking for a search message from the main system. 
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When one is found, it starts a search procedure by broadcasting the 

request and the requesting process number to all Rlj registers. It 

also calculates a modified rem vector that corresponds to the rem 

vector if the request is granted. The modified rem vector is broad­

casted to all R2 registers using a parallel write mode cycle. Each 

process micro compares the requesting process number to the number of 

the process it represents. The one that has a match becomes responsi­

ble for starting the first search step by activating the search line. 

Upon receiving the search signal, all active process micros start 

searching by comparing their rank vectors with the modified rem vector. 

If rankj is less than or equal to the rem vector, then process(j) is 

capable of running to completion if the request is granted, and hence, 

the process micro(j) sets its associated 'Ok^' flag. Note that only 

micros that have active processes in the system should participate in 

the search; these will be called active micros. All Ok^ (jel, 2, —, m) 

are daisy chained, such that if any of them is set during a search 

step, a signal is generated to increment a counter 'COUNT'. The 

supervisor monitors the counter and whenever it detects an increment, 

it generates an acknowledge signal 'OKACK' that ripples through the 

daisy chain and stops at the first set 'Ok^' flag, generating another 

signal that sets the corresponding 'OUT OF SRCH' flag. This tells 

process micro(N) that it has been accounted for, and that it should get 

out of the search after initiating the next search step. Process 

micro(N) calculates the new modified rem vector, stores it into all 

R2j (jel, 2, ..., m) registers of active micros. A bit in R3j can 
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represent the status of processmîcro(j) "active" or "inactive". This 

bit may control the acceptance of parallel write operations in R2j. 

An out of search process micro is inactive, and it is possible to in­

clude the 'OUT OF SRCH' flag in R3. Setting the 'out of SRCH' flag 

should also set the active/inactive bit to 'inactive' in R3. After 

broadcasting the new rem vector, process micro(N) clears all 'OK' 

flags by activating the 'OKCLEAR' line. Finally, it activates the 

'SEARCH' line initiating a new search step. The search continues until 

either all search steps have been completed or an unsuccessful search 

step is encountered. A successful search means that the number in 

the counter is equal to the number of active processes, and in such a 

case, the supervisor has to pass a message to the main system indicat­

ing the safety of the request. However, any search step that ends 

without any 'OK' flag being set means that the result of the search is 

"not safe," and a message in that effect has to be passed to the main 

system. For simplicity, it is possible for the supervisor to set the 

"TIMER" to a certain value corresponding to the number of active 

processes before initiating the search. The "TIMER" interrupts the 

supervisor at the end of the expected search period, so that the super­

visor can check the counter "COUNT" and determine the safety status of 

the request. 

The support module makes the search time 0(m), since only m search 

steps are needed at the most. The savings, as compared to Habermann's 

algorithm, come from the fact that up to m search steps In Habermann's 

model correspond to one search step in our case. In other words, up to 
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m search steps are parallel processed in one search step time in the 

support module. 

0(km) module, k > 1 

The idea and basic operation are the same as the 0(m) module 

discussed above except that each process micro will be responsible for 

k processes instead of only one. In this case, k 'OK' flags and k 

'OUT OF SRCH' flags will be needed per microprocessor. Also, 3k external 

registers per microprocessor are to be used. However, it is possible 

to use the same amount of hardware per process micro as the 0(m) case 

giving the microprocessor more work to do internally, on in a private 

read/write memory such that a process micro can distinguish different 

process states. 

It is clear that a trade-off between speed and the amount of hard­

ware is needed. This is because hardware savings are at the expense of 

execution time. However, this kind of module (k > 1) might be necessi­

tated by a large degree of multiprogramming. 

0(km) module, k < 1 

The idea and module organization are different in this case. It 

is feasible only when the number of non-preemptive resources in the 

system is relatively small. The idea is based on the following observa­

tions: 

(!) Limited number of resources means limited number of competing 

processes. 

(2) The state of the system at any given time is uniquely 
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determined by the process ranks. 

(3) Not all process rank combinations are feasible [17]. Hence, 

only subset of all system states (determined by process 

ranks) are to be accounted for. 

As discussed above, when all process ranks are known, it is possi­

ble to run an algorithm to determine the safety condition of the state. 

Thus, if we consider the ranks as inputs, the state as an output, it is 

possible to design some hardware to substitute the algorithm as shown 

in Figure 4. 

The hardware is to consist mainly of a Read Only Memory (ROM) and 

some encoding logic. The ROM stores states corresponding to every 

feasible rank combination. Only one bit per combination is required. 

The value stored in a certain bit is determined during the design phase 

by running the algorithm for the corresponding rank combination. 

Module Organization 

Only one microprocessor is needed, as shown in Figure 5. It 

receives requests from the main system as discussed before. One register 

per process is used to hold the rank of the process. The combination of 

all register contents represents the state of the system. Thus, all we 

need to do is to encode all register contents to produce an address 

that addresses the ROM. This can be implemented by using a tree of 

Programmable Logic Arrays (PLAs). Each PLA at the first level combines 

and encodes two or three registers. At the same time, it suppresses 

redundant states that are not feasible before presenting its output to 

the next level. The process is repeated until final address 
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(representing the state of the system) is presented to the ROM. The 

output of the ROM (one bit) is the safety state of the allocation 

request. The microprocessor receives the result and returns a message 

to the main system. The microprocessor has to return the state of the 

requesting process to its original state before the request if the 

request is denied. If the request is safe, the modified process state 

remains unchanged until the process makes another request or until it 

releases some or all the resources it holds. 

Clearly, the module is very fast compared to the two modules 

previously described. However, it is only suitable when small numbers 

of non-preemptive resources are employed in the system. 
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CHAPTER V. A MODULE FOR THE EXACT IMPLEMENTATION OF THE 

LEAST RECENTLY USED REPLACEMENT POLICY 

In our second example, we will not only provide the idea of how to 

implement the exact Least Recently Used (LRU) replacement policy in a 

demand paging system, but also give the detailed design of a submodule 

that was designed, built, and tested. The results proved the correct­

ness of the idea and the feasibility of the technique. The next chapter 

will cover the results of the experiment, while in this chapter all 

design and implementation details will be given. 

Introduction 

A replacement policy in any memory management system has to find 

obsolete information in main memory. This is necessary before any new 

information can be loaded into the Main Memory (MM) if there is no free 

space available. Free space in MM is created either when information 

residing in MM is deleted or by purposely swapping out information which 

is of no immediate interest. If information is deleted, the cleared 

space can simply be added to the pool of free space. If free space 

must be created by swapping, we need a criterion by which obsolete 

information can be distinguished from active information. The right 

time to look for obsolete information is when memory space is requested 

while the free space is insufficient. This is why an algorithm which 

selects the information to be swapped out is called a replacement 

algorithm. A replacement algorithm applied by a demand paging system 

allows referencing inaccessible pages and interprets such a reference 
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as a request to make the page accessible. This is called a "page 

fault." If handling a page fault is left to the operating system, 

the operating system must find an obsolete page which can be exchanged 

for the requested page. The overall objective of a two-level storage 

management is to have those pages in main memory which have the highest 

probability of being referenced in the near future. Therefore, nearly 

all replacement algorithms have as their objective guessing which page 

in main memory currently has the lowest probability of being referenced. 

This page is then distinguished as the result of the replacement 

algori thm. 

The simplest replacement policy selects a page at random. This 

algorithm is implemented by a designer who believes that it is not 

possible to make an intelligent guess as to which page is least likely 

to be referenced in the near future. Of course, implementing this policy 

is trivial, but its performance is poor [17]. 

Two other straightforward algorithms are the First-In-First-Out 

(FIFO), and Round Robin (RR). The FIFO replacement algorithm is based 

on the observation that the probability of referencing a page in the 

near future is likely to be a decreasing function of the time that the 

page resides in main memory. It seems, therefore, that the least harm 

is done if the oldest page is swapped out, that is, the page that was 

brought into main memory the longest ago. The FIFO replacement algorithm 

needs the support of a FIFO queue in which pages in the frames are ordered 

by arrival time. Implementing this algorithm is also trivial. 

The Round Robin (RR) algorithm is based on the expectation that the 
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time intervals during which pages are referenced are reasonably close 

to an average time length. If this is true, the page with the lowest 

reference probability Is the one in the frame least recently selected. 

Implementing the RR is very simple by the use of an "own" variable that 

points to the frame last cleared. When the algorithm is called, it 

cycles through the frame table starting from where it left off last 

time until it finds a frame that is in use. 

Experiments and measurements have shown that the performance of 

the FIFO and the RR replacement policies are not good [17]. 

The Least Recently Used (LRU) algorithm recognizes the fact that 

some pages are used for longer periods of time than others. For example, 

a page containing part of a main program or the global data of a program 

usually has a longer lifetime than a procedure page or page of temporary 

data. Therefore, the LRU algorithm is based on the assumption that the 

probability of referencing a particular page is inversely proportional 

to the time interval between the last reference to the page and the . 

present moment. The page selected by the LRU algorithm is then the 

least recently referenced page. Numerous studies pointed out the 

superiority of the LRU algorithm, one of which will now be reviewed. 

An interesting study that was done at Princeton University in 1968 

provides experimental data on the behavior of programs in a paging 

environment [19]. The study discussed the problems of paging systems 

in general and the problem of poor object program behavior in a multi­

programming environment in particular. Specifically, the frequency of 

page turning (transferring pages in and out of main memory) necessary 
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for the execution of a program never wholly in main memory, tends to 

degrade the system performance by introducing an excessive amount of 

input/output interference. Although the study dealt with different 

aspects that might affect paging system performance such as page size, 

number of pages kept in main memory at one time and page replacement 

algorithms, our concern is with the part that studied the effect of 

different replacement policies on program behavior. The experiment was 

designed for the study of programs written for the IBM system/360 

model 50 computer and organized to operate under the operating system 

in use at Princeton University at that time. Each program studied was 

used as input to an interpreter written for the mentioned machine. 

The paging behavior of the interpreted program was traced by recording 

an identification of the new page, determining whether it was a data 

or an instruction page, and determining the number of instructions 

executed since the last page request. Simulations were carried out to 

determine the paging characteristics of the programs when run under 

different page replacement algorithms. Specifically, the study com­

pared the page fault frequency introduced by the LRU algorithm and by 

the Belady Optimum Replacement (BOR) algorithm. The BOR is based on a 

prior knowledge of the entire sequence in which pages are used in the 

execution of a program [20]. The algorithm is considered the best 

possible replacement algorithm, but it is totally impractical. Thus, 

the study selected the BOR as a means of comparing the performance of 

various practical algorithms with the best possible one. 

The study concluded that page turning is a substantial problem in 
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a demand paging system, and that a least recently used replacement 

algorithm yields a performance within about 30% of that optimum page 

replacement sequence. The authors also remarked that with sufficient 

main memory, the LRU algorithm is an appropriate replacement algorithm 

in most cases. The authors also mentioned that good agreement had been 

observed with the study made by Belady under different conditions 

[19, 20]. 

Two algorithms that approximate the LRU are the Least Frequently 

Used (LFU) and the MULTICS [17, 21]. The LFU algorithm counts the 

number of references to a page and selects the page that had been least 

frequently used. However, the overhead in the LFU case is very high, 

since the whole page table has to be searched every time a page fault 

occurs. 

The MULT ICS algorithm (also known as the second chance or the 

clock algorithm) is a much better approximation to the LRU than the LFU. 

Its overhead is much less and provides better performance than the LFU. 

However, the MULT ICS is still an approximation and incurs an overhead 

that can be considered high [17, 19]. 

Despite the near full agreement that the LRU is the best practical 

replacement algorithm, it was believed that the exact implementation of 

the LRU is impractical. A common phrase in the literature was that 

exact implementation of the LRU is not feasible. For instance, in a 

1978 book [17], the author said: 

An exact implementation of an LRU algorithm is not 
feasible because of its tremendous overhead on current 
hardware. It would be necessary to record the time of 
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reference ever time a page is referenced because the operat­
ing system has no way of knowing which reference to a page 
is the last. 

Well, we can say that this is no longer true. A hardware sub-

module was designed and built to challenge the above statement. The 

submodule had the objective of exact implementation of the LRU algorithm, 

and proved to be successful at a very low cost. The overhead in terms 

of CPU time is possibly less than that of any existing replacement 

algorithms. 

There are two reasons that made possible the accomplishing of 

this: 

(1) The availability of low cost, powerful microprocessors and 

hardware in general, and 

(2) Parallel processing within a support module that works with 

minimum interference with the main system. 

The design and operation of support module will now be given in 

detai1. 

Exact LRU Support Module Organization 

The basic idea in the design is to use a number of submodules that 

work simultaneously within an LRU module. Each submodule contains a 

microprocessor and is responsible for finding the least recently used 

page frame in a certain main memory area. If we divide main memory Into 

'n' equal areas, then each submodule would be assigned one such area. 

Only the part of the address (on main memory bus) that corresponds 

to the frame number is the concern of the module. The In-page address 

is of no importance and can be ignored because we are dealing with pages. 
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not locations. The frame address stream is first filtered out to sup­

press all consecutive references to the same page except the first one. 

This means that only the first in a sequence of references to a page 

is to be considered. It is only necessary to compare the relative 

reference times to different pages rather than the absolute reference 

times. This filtering is also important to reduce the arrival rate 

at the module and to minimize possible interference with the main 

system as will be explained later. An address distribution circuit, 

mainly a decoder, is to be used to route the filtered stream to sub-

modules according to the main memory areas they service. A TIMER is 

incremented every time a filtered frame number is released from the 

filtering circuit. The TIMER serves all submodules, so only one timer 

is needed for the whole module. Figure 6 shows the block diagram of 

the support module. A frame address stream arriving at a submodule 

will be called an area stream. 

A supervisor microprocessor for the whole module is responsible 

for finding the overall LRU page frame from among the LRU area pages 

produced by the submodules. The supervisor also has to communicate 

and present results to the main system. A more detailed discussion 

about the supervisor's functions will be given later in this chapter. 

Submodule Organization 

A submodule designed to handle an area stream contains basically a 

microprocessor, a read/write or Random Access Memory (RAM), and Read 

Only Memory (ROM). The organization of the submodule is shown in Figure 

7. The RAM is used to record the time a page frame is referenced. 
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while the ROM contains the routine to be executed by the microprocessor. 

For each page frame in the main memory assigned to the submodule, there 

is a certain set of locations in the RAM that contains its last time 

of reference. These locations will be called a Time Record (TR). 

Every time a frame address arrives at the submodule, the contents of 

the TIMER are copied into the TR corresponding to the frame address. 

The frame address itself is used to address the RAM directly to write 

the TIMER into the frame's TR in RAM. 

The microprocessor reads its LRU routine from the ROM without inter­

ference from the main system. Three-state buffers are used such that 

the microprocessor can access its ROM freely at any time without having 

to interfere with the outside world. The only time interference has to 

be considered is when the microprocessor wants to access the RAM. An 

arbitration circuit is used to arbitrate between a time write operation 

and a microprocessor RAM read cycle. 

The submodule is designed to handle 128 main memory page frames. 

If we assume that the main memory has 1024 page frames, then it can 

be seen as composed of eight equal areas of 128 frames each. However, 

the design can easily be modified to assign the submodule different 

number of frames other than 128. It is much more convenient to divide 

main memory into a number of areas that is a power of 2, and at the 

same time assign a submodule a number of frames that is also a power of 

2. This could result in a much easier and more efficient design. For 

instance, a submodule can take care of 64, 128, 256, or 512 frames with 

different module response times. We chose to assign 128 frames to the 
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submodule and check the response tinne. As will be discussed later in 

the next chapter, the response time obtained with 128 frames/submodule 

is quite acceptable and doubling the number of frames should result 

also in an acceptable response time. 

Detailed Submodule Design 

As shown in Figure 7, both the data and address buses are buffered 

to control accesses to the RAM. Since the RAM Is the source of poten­

tial conflicts between the main system (writing a time record) and the 

submodule's microprocessor (reading a time record), its access is con­

trolled by a simple arbitration circuit. The only case a wait signal 

is generated by the arbitration circuit and sent to the main system is 

when the microprocessor is in the process of reading the RAM and a 

filtered address arrives at the submodule to initiate a time write cycle 

into the RAM. As discussed later, the probability of this event can be 

reduced to about 1%. Although our intention was to build and test a 

submodule, it was also necessary to design and build some extra hard­

ware. For instance, an address generation module capable of producing 

some prespecified sequences of addresses is necessary to enable testing 

the submodule. Also, even though only one TIMER circuit is needed for 

the whole module, it is essential to have a TIMER circuit to test the 

submodule, in the following section, a detailed description of the 

major elements in the submodule is given. 
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The microprocessor 

Motorola's MC68000 [22] was selected as the submodule's micro­

processor for the following reasons: 

(1) It is a fast microprocessor that can operate at high clock 

rate (up to 8 MHZ). 

(2) Its address space is very large; in fact, it is much larger 

than is needed. This allows the use of some address lines 

for direct control with virtually no decoding, thus simplify­

ing the design and reducing the cost. 

(3) Most instructions can handle long words (32 bits). This 

results in a simpler and more efficient routine, especially 

since the TIMER is chosen to be 32 bits. 

(4) Its data bus is 16 bits wide, which means fewer references to 

the RAM than would be the case if an 8 bit micro were 

selected. Thus, fewer potential conflicts with main system 

are to be expected. 

(5) It is possible to utilize the bus error feature provided by 

the MC68000 to further reduce the possibility of interference 

with the main system activities. This will be explained in 

detail in the next chapter. 

Although the MC68000 has many other areas of strength and superior­

ity, only subsets of its capabilities were actually used in the design. 

For example, it has an advanced interrupt handling scheme that uses 

seven levels or priority; however, the whole interrupt system had not 

been utilized in the design. The interrupt system might be useful in 
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designing the supervisor submodule as a means of interaction with the 

main system. 

Arbitration 

A simple arbitration circuit is employed to organize and control 

accesses to the RAM. The arbitration circuit receives requests from 

the microprocessor to perform RAM read cycles and receives time write 

requests whenever a valid frame address arrives to the submodule. The 

request that arrives first is granted the access to the RAM. The arbi­

tration circuit is a simple R-S latch built of fast NAND gates, namely 

SN74S00 integrated circuits. It must be mentioned that the main system 

does not actually make requests to access the RAM In the submodule but 

tries to reference a main memory frame that is assigned to the submodule. 

The request received by the arbitration circuit is generated within the 

module and can be interpreted as a request to record the reference time 

from the TIMER into the frames' TR in the submodule's RAM. Thus, the 

main system is not actually aware of what is taking place in the sup­

port module, but it sometimes may have to wait until the time recording 

process is completed. Thus, if main memory control logic is employed 

that is capable of causing a main CPU to wait until the addressed area 

is free, the resulting wait signal must be logically ORed with the wait 

signal generated by the support module. 

Random Access Memory (RAM) 

The read/write memory or Random Access Memory (RAM) represents a 

somewhat critical part of submodule design for the following reasons: 
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(1) The RAM is the only part of the submodule that can cause 

access conflicts between the microprocessor (trying to read) 

and the time recording process (trying to write). 

(2) The addressing space as seen by the microprocessor is dif­

ferent from that seen by the time recording scheme. This 

will shortly be explained. 

(3) Critical timing problems result because arbitration should 

be as fast as possible to allow both systems to work at 

their maximum speed. At the same time, timing specifications 

of the RAM chips must be met to ensure correct operation. 

Also, with the existence of two sets of address and data 

buffers, some other specifications had to be taken into 

account to enable and disable the buffers at appropriate 

times. 

A set of 6116-4 RAM chips was selected for the read-write memory. 

They have an access time of 200 ns. Although the 6116 chips are intern­

ally organized as 2Kx8 bits, only 128 bytes/chip were actually used. 

The reason is the unavailability of wider word chips with fewer words. 

The RAM is organized as 128 records, each having 32 bits. Hence, 

four 6ll6 chips are needed. This is consistent with assigning 128 main 

memory frames to the submodule. 

Since the MC68000 is a l6-bit microprocessor, each Time Record (TR) 

has to be read from memory In two read cycles. This is not the case 

when a time write process is to be performed since it is possible to 

write a whole TR in only one write cycle (the microprocessor is not 
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involved here). This has been achieved in the design by using only 7 

address lines from the main system, whereas 8 address lines from the 

MC68000 address have to be utilized to address the RAM. The least 

significant bit (A^) of the MC68000 is used to select either the lower 

16 bits (A^ = 0) or the higher 16 bits (A^ = l) of a time record. Note 

that Aq of the MC68000 doesn't appear on the address bus but is used 

internally in the case of byte instructions. All the instructions used 

are either word or long word instructions. 

As mentioned earlier, an address stream generation module was 

built to allow testing the LRU submodule. The former employed another 

MC68000 microprocessor. To differentiate between the signal lines 

associated with the submodules MC68000 and those of the test module, we 

will affix letter P (for processor) to the submodule lines and a T (for 

test) to the test module lines. 

Addressing the four RAM chips is either done using Agp- Agp of the 

submodule or A^^-A^^ of the test module. Figure 8 shows the RAM 

addressing mechanism, as well as major control signals that control 

RAM operation. The control part is discussed in detail later in this 

chapter. 

To meet the timing requirements, it was found essential to do the 

arbitration as early as possible in any RAM read or time write cycle. 

This is achieved by using A^^p as a RAM read request signal for the LRU 

submodule while A^^j 'S used as the time write request signal. These 

signals become valid ̂  clock period in advance of the actual read or 

write cycle starts since the address lines in the MC68000 are activated 
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Y clock period before the Address Strobe (AS) signal is activated. Of 

course the use of A^2j and A^^p had to be taken into consideration when 

the programs were designed. 

Since the RAM can be accessed from two different sources, a set 

of 3-state address and data buffers are needed on each side. However, 

it was essential to include two sets of data buffers (16 bits each) at 

the LRU submodule side because use of only one 16-bit buffer would 

short circuit some of the TIMER buffer output lines. This can be under­

stood from Figure 9, which indicates that each TIMER buffer output line 

goes to one RAM chip and mandates that the same must apply to the other 

side to avoid short circuits. 

The existence of two sets of buffers requires exclusive enabling, 

that is, one set is enabled at a time. This is taken care of by the 

arbitration circuit which always has one of its outputs active at a 

time. If no request is made to access the RAM, both buffers have to be 

disabled. It must be mentioned that bidirectional buffers are used at 

the submodule's side to allow the microprocessor to initialize the time 

records at the beginning of operation. 

Read Only Memory (ROM) 

The ROM stores the routine designed to implement the exact LRU 

algorithm and is considered private to the submodule. This part of the 

circuit is designed such that the microprocessor can access the ROM at 

any time freely without any kind of interference from the outside world. 

This means that a time record can be written into the RAM while the 

microprocessor is fetching or executing instructions that do not require 
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RAM accesses. Thus, the microprocessor can operate at full speed as 

long as it is not accessing the RAM while a time record is being 

written. The existence of data and address buffers permits direct 

connection of the address and data buses to the ROM. All control 

signals needed to control the ROM operation are generated directly 

from the microprocessor's address and control lines. 

The TIMER 

Although only one TIMER is required to serve all submodules, it 

was necessary to build one to allow testing the submodule. The TIMER 

was chosen to be a 32 binary counter that is incremented every time a 

valid address is released from the filtering circuit. The SN74393 chips 

are utilized to build the TIMER. Each chip can be configured to form 

an 8-bit binary counter; therefore, four chips are needed to build the 

32-bit counter. 

Since the arrival of a valid frame address to the module implies 

incrementing the TIMER and writing it into the RAM, the stability of 

all TIMER bits must be ensured during the write operation. This is 

accomplished by performing the increment operation immediately after 

the write operation is completed. The rising edge of the signal that 

enables the TIMER buffers (active low signal) is used to increment the 

TIMER. However, the TIMER needs a maximum of 240 ns to stabilize all 

32 bits, which means that 240 ns must elapse between two consecutive 

time write operations to ensure correctness. It is possible to solve 

this problem by utilizing a single shot or monostable multivibrator that 

has a period of slightly over 240 ns (say 250 ns). The monostable 
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is driven by the TIMER increment signal and its output is used to in­

hibit any successive signal that arrives during the 250 ns period. 

Although this technique allows two time records to have the same 

value, it should not be considered a problem for two reasons: 

(1) The probability of switching from one page frame to another 

after just one reference is very small (locality of reference) 

[17]. 

(2) If a page is to be selected as the LRU from two pages that 

have the same reference time, it does not make much differ­

ence which one is selected. This is because an output is 

produced by the module, say every 2-3 ms which makes 250 ns 

negligible. In fact, the 250 ns can be approximated to zero 

with an error of 1/800 at most. 

It is also possible with faster chips than the SN7^393 to avoid the 

whole stability issue, provided that the main system is not too fast. 

The SN74393 was good enough for the experiments since the address 

generator speed was not too fast for the selected chips and two con­

secutive increment signals were more than 250 ns apart. Thus, there 

was no need for the monostable in our circuit although it is trivial 

to employ it. Figure 10 shows the TIMER and its buffers while Figure 11 

shows a timing diagram of a time recording and TIMER incrementing cycle. 

Notice that the buffers in Figure 10 are built of SN74LS244 chips which 

are unidirectional. 
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Decoding and control logic 

Low power Schottky TTL chips are used throughout the submodule 

except for the arbitration circuit. This makes it possible to directly 

load the MC68000 microprocessor pins with more than one load. Actually, 

some pins are loaded with up to five loads directly without buffering. 

Moreover, as is well-known, Schottky logic is superior in handling un­

wanted noise signals because of the existence of a clamping diode at 

each input. 

Since normal Schottky chips are faster than low power Schottky 

chips, the arbitration circuit which has to be very fast utilized 

normal Shottky chips. 

Output latches 

The output produced by a submodule is composed basically of two 

parts. The first part is the LRU page frame address within the main 

memory area assigned to the submodule. In our case, this part needs 

only 7 bits; therefore, an 8-bit output latch is enough to hold it. 

The other part of the output is the time of the last reference to the 

LRU frame; i.e., the time record of the output LRU frame. Since a time 

record is 32 bits wide, four 8-bit latches are needed to hold the time 

part. Thus, a total of five 8-bit latches is needed to hold a sub-

module's output. Intel's 8212 chips are used as output latches and 

are connected to the data bus through two SN74LS244 buffer chips. The 

reason why the time record is to be dispatched is that the supervisor 

microprocessor needs to compare the time records of different LRU frames 
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produced by different submodules iri order to be able to find out the 

overall LRU page frame in the whole main memory. 

Now, having described all major parts of the LRU submodule, a 

description of the address stream generation module will follow. 

Address Stream Generation Module 

The function of the address stream generation module is to simu­

late the main system address stream as well as the address filtering and 

distribution circuits. Thus, all that is needed is to generate a pre-

specified address stream that can be directed to the LRU submodule to 

facilitate testing and evaluating the submodule. 

An MC68000 microprocessor is used to simulate the supported main 

system central processing unit(s) (CPUs). Two 2716 ROM chips, address 

buffering chip, and some LS chips are used along with the MC68000 to 

form the address generation module. 

The basic idea is to have the microprocessor execute a very simple 

routine that is designed to produce some prespecified address sequence 

on the test module's address bus. Since only seven address lines are 

to be directed to the LRU submodule, it is necessary to differentiate 

between ROM references and addresses that should be directed to the 

submodule. This is done by assigning a lower address space to the ROM 

and higher one to the generated stream. Address line 12 (A^gy) is used 

to separate the two areas, hence A^gy^1 means the address on the bus is 

to be directed to the submodule. Address lines A^y through A^ are used 

to represent a page frame address whenever A^gy is high. The block 

diagram of the test circuit is shown in Figure 12. 
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Figure 13- Address générât 
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Figure 13. (Continued) 
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A set of simple programs were written to generate different sequences 

of addresses that were intended to test the response of the LRU sub-

module. A sample of these programs is shown in Figure 13. Since the 

address filtering and distribution circuits mentioned earlier have not 

really been built, it has been found necessary to simulate different 

arrival rates at the submodule in the design of the address generation 

circuit programs. The No Operation (NOP) instructions are used to sub­

stitute for filtered-out addresses. By controlling the number of the 

NOP instructions in an address generation loop, it is possible to con­

trol the arrival rate at the submodule. It is worth mentioning that in 

an actual situation, it is not expected that a valid address will arrive 

at the submodule every time an address is put on the main system's bus. 

The reason is that it is very unlikely that the main system will always 

switch from page to page after only one reference (locality of reference) 

[17]. Even if this happens, it is expected that, on the average, only 

1/n of the references will be directed to a certain submodule, where n 

is the number of submodules in the LRU module. Thus, it is practical 

to assume that the arrival rate at any submodule will be, on the average, 

less than 1/n of the whole address stream rate on the main system's bus. 

Detailed Circuit Diagram 

The detailed circuit diagram of the whole circuit including both 

the LRU submodule and the address generation circuit is shown in Figure 

14, and a photograph of the built circuits is shown in Figure 15. Notice 

that the circuits shown in the photograph include the LRU submodule, the 

TIMER, the clock generator, the reset circuit, and the address generation 
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Figure 15. A photograph of the built circuits 
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module. If the submodule were assembled on a separate printed circuit 

board, it should be possible to use a 5"x5" board. The whole LRU 

module could be assembled to occupy 6"x6"xlO" at most. This means that 

it can nicely fit inside a modern disk drive assembly with no need for 

much larger space. 

The LRU Routine 

The LRU routine is designed to be executed by the submodule's 

MC68000 microprocessor. It has as an objective finding out the LRU 

page frame in the main memory area assigned to the submodule. The 

routine is written such that the number of references to the RAM is 

minimum. This is necessary to reduce the probability of a RAM access 

conflict as discussed before. By copying a time record to an internal 

register, it is easy to use the register in all comparison operations 

needed by the routine without having to reference the RAM again. A 

flow chart of the LRU routine is shown in Figure 16. 

It has been found necessary to write more than one LRU routine to 

compare the performance of the submodule as the number of records stored 

inside the microprocessor varies. Therefore, three LRU routines, 

ROUT I NE1, R0UTINE2, and ROUTINES were designed to work with different 

number of internally kept records. ROUT I NE1 keeps only the record of 

the LRU page frame. ROUT INE2 keeps the LRU two records inside the 

microprocessor, while ROUTINE) keeps the LRU three records. R0UTINE3 

is shown in Figure 17» while ROUTINEl and R0UTINE2 are given in 

Appendices A and B. The following discussion describes ROUTINE); it 

also applies to ROUTINEl and R0UTINE2 because of the similarity 
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START 

INITIALIZE 

KEEP FIRST 
N RECORDS 

READ A 
RECORD 

ALL 128 > 
RECORDS 
SEARCHED/ 

OLDER THANXNO 
ANY STORED/" 
V ONE ? X 

YES YES 

CHECK VALIDITY 
OF LRU RECORDS 

REPLACE MOST 
RECENT RECORD 
WITH NEW ONE 

^ ANY \ 
VALID RECORD 

OUTPUT 
OLDEST RECORD 

YES 

Figure 16. Flow chart of LRU routine 
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•68000' 

INIT 

LI 

L2 

L3 

L4 

ORG OOOOH 
HEX 000,2300,000,0400 
HEX 000,0000,000,OEOO 
ORG 400H 
MOVE.L #700H,SR INITIALIZE STATUS REGISTER. 
MOVE.L #0,A0 CLEAR AO THRU A2. 
MOVE.L #0,A1 
MOVE.L #0,A2 
MOVE.L #22000H,A6 LOAD A6 WITH HIGHEST ADDRESS+4. 
MOVE.L #22200H,A5 LOAD A5 WITH LOWEST ADDRESS. 
CLR.L D7 D7 WILL BE USED TO CLEAR ALL 
MOVE.L 0

 

1 128 RECORDS. 
CMPA.L A6,A5 CLEAR ALL 128 RECORDS. 

BHI LI 
MOVE.L #2200H,A5 REINITIALIZE A5&A6 FOR READ. 
MOVE.L #2000H,A6 
MOVE.L -[A5],D0 READ FIRST THREE RECORDS AND 
MOVE.W A5,A0 ORDER THEM. 
MOVE.L -[A5],D7 DO SHOULD HOLD THE OLDEST RECORD 
CMP.L D0,D7 WITH ITS ADDRESS IN AO. 
BHI L2 D1 SAl SHOULD HOLD THE NEXT OLDEST 
MOVE.L D0,D1 RECORD AND ITS ADDRESS RESPECTIVELY 
MOVE.W A0,A1 'D2&A2 SHOULD HOLD THE LAST RECORD 
MOVE.L D7,D0 AND ITS ADDRESS RESPECTIVELY. 
MOVE.W A5,A0 
BRA L3 
MOVE.L D7,D1 
MOVE.W A5,A1 
MOVE.L -[A5],D7 
CMP.L D0,D7 
BHI L4 
MOVE.L D1,D2 
MOVE.W A1,A2 
MOVE.L D0,D1 
MOVE.W A0,A1 
MOVE.L D7,D0 
MOVE.W A5,A0 
BRA NSRCH 
CMP.L D1,D7 
BHI L5 
MOVE.L D1,02 
MOVE.W A1 ,A2 
MOVE.L D7,D1 
MOVE.W A5,A1 
BRA NSRCH 

Figure 17. Exact LRU program "ROUTINES" 
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L5 MOVE.L D7,D2 
MOVE.W A5,A2 

NSRCH MOVE.L -[A5],D7 READ A TIME RECORD INTO D7 
COMP.L D2,D7 IF NOT OLDER THAN THE ONE IN D2 
BHI TSTEND IGNORE IT. 
CMP.L D1,D7 IT IS OLDER 
BHI L6 REORDER THE LIST AS ABOVE 
CMP.L D0,D7 DISCARD D2&A2 
BHI L7 
MOVE.L D1,D2 
MOVE.W A1,A2 
MOVE.L D0,D1 
MOVE.W AO, Al 
MOVE.L D7,D0 
MOVE.W A5,A0 
BRA TSTEND 

L6 MOVE.L D7,D2 
MOVE.W A5,A2 
BRA TSTEND 

L7 MOVE.L D1,D2 
MOVE.W A1,A2 
MOVE.L D7,D1 
MOVE.W A5,A1 

TSTEND COMPA A5.A6 ALL 128 RECORDS SEARCHED? 
BNE NSRCH IF NOT GO BACK TO NSRCH. 

OUTPUT CMP.L [AO],DO CHECK VALIDITY OF DO. 
BNE L8 IF NOT VALID GO TO L8 
MOVE.L A0,D4 IT IS VALID. 
LSR.L #1,D4 MAP ADDRESS BACK TO 1NPUT 
MOVE.W D4,4000H ADDRESS AREA AND OUTPUT IT. 
MOVE.L D0,4010H OUTPUT ITS TIME RECORD. 
BRA ENDOUT 

L8 CMP.L [A1],D1 ;CHEK VALIDITY OF D1 AND OUTPUT IF 
BNE L9 ;VALID.IF NOT GO TO L9. 
MOVE.L Al ,#4 
LSR.L #1,D4 
MOVE.W D4,4000H 
MOVE.L 01,4010H 
BRA ENDOUT 

L9 CMP.L [A2],D2 ; CHECK VALIDITY OF DO AND OUTPUT IF 
BNE ENDOUT ;VAL ID. IF NOT VALID NO OUTPUT IS 
MOVE.L A2,D4 ;PRODUCED. 
LSR #1,D4 
MOVE.W D4,4000H 
MOVE.L D2,4010H 

ENOOUT MOVE.W #2200H,A5 ; REINITIALIZE Ag. 
BRA SEARCH ;START A NEW SEARCH 

Figure 17- (Continued) 
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ORG 
BUSERR MOVE.L 

MOVE.L 
RTE 

ORG 
ADDERR MOVE.L 

MOVE.L 
RTE 

ODOOH 
#0FFFFFFFFH,i»010H ;BUS ERROR HANDLER. 
#0400H,0CH[A7] 

OEOOH 
#0FFFFFFFFH,4010H ;ADDRESS ERROR HANDLER. 
#0400H,0CH[A7] 

Figure 17- (Continued) 
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between all three routines except for the number of internal!y stored 

records. 

The routine starts by initializing the status register to the user 

mode and an interrupt level of seven. A zero is moved to address 

registers AO, A1, and A2 in a long word instruction in order to clear 

the most significant bits in particular. This is necessary to avoid 

using long word instructions thereafter where word instructions can be 

used to reduce the execution time. Since only address lines AlP through 

A9T are used to address the RAM when A13P is asserted, the address 

space occupied by all 128 time records is 2000 through 21 FF in hexa­

decimal. However, because of the availability of very large address 

space, address line A17P is used to differentiate between RAM read and 

RAM write operations such that when A17P is high, the operation is 

write; otherwise, it is a read operation. The only time the RAM is 

written into by the microprocessor is during initialization. Thus, 

address register A5 is initialized to 22200 hex which corresponds to 

the highest record address plus four. This is because A5 is used to 

step through the time records in a pre-decrement long word mode. A6 is 

initialized to 2200 hex which is the lowest time record address for a 

RAM write operation. Data register D7 is then cleared and used to 

clear all 128 records in a loop that starts at LI. After clearing all 

time records, registers A5 and A6 are reinitialized for RAM reads. 

A5 is loaded with 2200 hex, and A6 is loaded with 2000 hex. The 

SEARCH part is an initial step in the overall search process. It 

records the first three encountered time records (the highest address 
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time records), and at the same time sorts them in an ordered list. 

As a result, data register DO holds the oldest referenced page frame 

record while address register AO holds its address. D1 and A1 hold 

the next oldest time record and its frame address, respectively. D2 

and A2 contain the last referenced time record and its address. 

After initializing the search process, the NORMAL SEARCH (NSRCH) 

begins. It reads a time record into D7. It then compares it with the 

most recently referenced frame record stored in 02. If the new record 

has a higher value, then it has no importance since it corresponds to 

a page frame that has been referenced more recently than any of the 

three frames whose records are kept inside the microprocessor. In such 

a case, the time record and its address are ignored. If the time record 

is less than that in D2, then it must be considered. A comparison with 

the record in DO and possibly D1 determines the new ordered list. The 

old contents of D2 and A2 are discarded and the new list is stored such 

that DO, D1, and D2 hold the time records, while AO, A1, and A2 hold 

the corresponding addresses in the same order discussed above. Address 

register AS is used as a pointer that steps through the list in a pre­

decrement mode. At TESTEND, the routine checks the completion of 

searching all 128 records by comparing A5 to A6 which holds the lowest 

address. If they match, then all 128 records have been searched; if 

A5 and A6 do not match, the routine branches back to NSRCH to continue 

the search. When all 128 records have been searched, the routine 

starts the output process. 

It might happen that a time record gets changed after being 
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considered by the routine. Therefore, it is important to check the 

validity of a record before producing it as the output. The output 

process starts by checking the validity of the time record stored in 

DO (the TR of the LRU page frame) by comparing DO to the current value 

for the record in the RAM. If valid, the contents of AO are outputted 

as the LRU page frame address, and the contents of DO are outputted as 

the corresponding time record. If DO is not valid, D1 is checked for 

validity and outputted along with A1, if it is still valid. If D1 is 

not valid, D2 is checked. If valid, A2 and D2 are outputted. If none 

of the records is valid, no output is produced and the routine jumps 

back to NSRCH to start a new search after loading A5 with 2200 hex 

as discussed before. It is worth mentioning that a page frame address 

is logically shifted right one bit before being outputted. This maps 

the output page frame address back to the original address space 

assigned to the submodule (1000 hex through lOFE hex) instead of 2000 

hex through 21FC hex, as seen by the submodule. Addresses 4000 and 

4010 are assigned to the output latches. 

An LRU Module Overview 

Although a whole LRU module has not been built, it is rather easy 

to build, especially since most of the module consists basically of 

copies of the designed and built submodule. The only part of the module 

that deserves more discussion is the supervisor submodule. As mentioned 

earlier, the primary responsibility of the supervisor submodule is to 

find out the overall page frame in main memory from among LRU area page 

frames produced by the other submodules. Thus, if we assume, as before. 
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that main memory is divided into eight equal areas of 128 frames each, 

then the supervisor has to search only the eight records produced by 

the area submodules. Therefore, it is clear that the amount of work 

that needs to be done by the supervisor Is only 1/16 of that done by 

an area submodule. This implies the following: 

(1) The output rate of the module is almost the same as that of 

a submodule. 

(2) The potential access conflicts between an area submodule 

and the supervisor submodule for output latch access should 

be decided in favor of the area submodule. 

The second item is very important in order not to slow down the 

overall speed of the module. Thus, in order to meet this demand, straight 

arbitration must be excluded and another way to solve potential conflicts 

must be considered. A technique that is simply, practical, and easy to 

implement will now be described. 

For each submodule, a flip-flop that is automatically set whenever 

the submodule is writing an output latch is used. The latches used in 

the area submodule built are Intel's 8112s which have 3-state outputs. 

All latch outputs can then be directly connected to the supervisor's 

data bus. Since the supervisor microprocessor need only read the latches 

(and not write into them), it is possible to freely read any latch at 

any time by just enabling its outputs using proper addressing, as shown 

in Figure 18. It might happen that the submodule microprocessor is 

writing the latch while the supervisor is reading the latch at the same 

time. There are two simple ways to solve this problem. The first 
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SUBMODULE 0 

LATCH 1 • • • LATCH 5 

SUBMODULE N 

LATCH 1 LATCH 5 

DATA BUS 

ENABLE LATCH 5 (O) 
ENABLE LATCH 1(0): 

SUPERVISOR 
SUBMODULE 

MICRO­
PROCESSOR 

)D BUS 

(CONTROL BUS) 

DECODE 
AND 
CONTROL 
LOGIC 

5 

to 

5 
5 

i i 

Figure 18. Possible connection between output latches and the supervisor submodule 
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utilizes the above-mentioned flip-flop. The supervisor has to check 

the flip-flop after each latch read operation. If the flip-flop is 

set, the supervisor clears the flip-flop and repeats the read cycle. 

The process is repeated until the flip-flop is found reset after the 

cycle. It might seem that the supervisor would be slowed down too much 

especially since it has to make 24 latch reads before producing an 

output. That is not exactly true, because in any given latch read 

cycle, the supervisor is dealing with only one submodule and the latter 

writes the latch less than 1% of the time. Therefore, it is very 

unlikely that the supervisor would have to repeat a latch read cycle 

more than one time before getting a correct read cycle. Moreover, slow­

ing down the supervisor is not a problem even operating at 10% of its 

maximum rate, since the output production rate of the supervisor would 

still be faster than that of a submodule. Note that the work load of 

the supervisor is approximately 1/16 that of an area submodule for 

reasons mentioned above. 

The second approach is even simpler than the first and can be 

implemented by just letting the supervisor read a certain latch two 

consecutive times and compare the values read. If the values agree, 

it goes on; if not, it reads the latch again until an agreement is 

found between the last two read cycles. It is worth mentioning, how­

ever, that at most it would have to read a latch a maximum of four times 

before a match is found. This happens when the submodule's micro writes 

the latch during the second read cycle by the supervisor. In such a 

case, the supervisor would have to do another two read cycles to the 
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same latch at most. This is because once a specific latch is written 

into by an area submodule, the next write cycle to the same latch is 

not less than 128 RAM references away. Thus, it seems that even the 

second simpler technique can, at most, slow down the supervisor sub-

module to work at no less than 1/4 of its maximum possible speed. 

Figure 18 shows a possible connection of the output latches to the 

supervisor submodule data bus. 
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CHAPTER VI. ADDRESS GENERATION ROUTINES, EXPERIMENTAL 

DATA, AND SOME REMARKS 

In this chapter, the routines designed to run on the address 

generation microprocessor will be discussed first. The data obtained 

from testing the LRU submodule using different combinations of address 

generation routines and LRU routines will then be given. The experi­

mental data provide very important performance figures, hence some 

remarks and observations will be introduced. We will discuss the possi­

bility of designing an LRU module that represents less loading on the 

supported system than the one described earlier which provides output 

at a faster rate than actually needed. 

Address Generation Routines 

In order to test the performance of the LRU submodule, it is essen­

tial to simulate the address stream of the main system. This implies 

the need for different address sequences with different characteristics 

such as address generation rate and the time period during which some 

addresses are deliberately skipped to simulate unreferenced page frames. 

Therefore, four address generation routines have been designed, each of 

which produces a sequence that exhibits some specific characteristics. 

The routines are ADDGENl, ADDGEN2, ADDGEN3, and ADDGEN4. The last one 

is shown in Figure 16, while the other three are given in Appendices 

C, D, and E, respectively. However, in order to enable easy understand­

ing of the experimental data, the address sequences produced by the 

routines are shown in Figures 19 through 23. The skipped addresses are 
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m 
Ë 

SEGMENT 1 

1000 
1002 

IS32 Skip 1030 

Skip 1060 for 4.1 ms 

<r 1070 
1074 

lOFE 

SEGMENT 3 

<A 1000 
I 1002 
•u : 
rn 

Skip 1090 
108E 
1092 

lOFE 

SEGMENT 2 

1000 

i l^A Sk'P 

Skip 1072 

for 3.37 ms 

{gpg Skip 10F8 & lOFA for 2.73 ms 

lOFE 

SEGMENT 4 

1000 
1002 

I 12:2 Skip 1016 
1014 
1018 

w : for 2.05 ms 

lOFE 

Figure 19. ADDGENl sequence (one NOP instruction in each loop) 
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SEGMENT 5 

m 1000 
g. 1002 

£ : 

^ 10C4 Skip 10C2 for 1.4ms 

I : 
10FE 

Figure 19. (Continued) 
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1000 
1002 

LA 

102E 
1032 

10FC 
10FE 

Skip 1030 for 5.4 ms 

C-\ 

1000 
1002 
: 

1070 
1076 

lOFE 

Skip 1072, 1074 for 3-7 ms 

1000 
1002 

10F6 
10FE 

Skip 10F8, 10FA, . ̂ , 
and lOFC ° 

ms 

tfi 

I 
4-* 
CM 

1000 
1002 

1014 
1018 

lOFE 

1000 
1002 

Skip 1016 for 2.7 ms 

loco 
10C4 

Skip 10C2 for 3.6 ms 

lOFE 

Figure 20. Address sequence generated by ADDGEN2 (three NOP instruc­
tions are used) 
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1000 
1002 

102E 
1032 

lOFE 

1070 
1076 

lOFE 

1000 
% 1002 

1000 
1002 

i 1014 
« 1018 
CM : 

lOFE 

1000 
1002 

lo'co 
lOCA 
: 
10FE 

Skip 1030 for 3 456 ms 

1000 No NOP instructions included 
1002 

Skip 1072, 1074 for 2.17 ms 

Skip 1016 for 1.728 ms 

Skip 10C2 for 2.88 ms 

Figure 21. Address sequence generated by ADDGEN3 (no NOP instructions 
are used) 
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1000 
1002 

m : 
i 102E 
% 1032 
u\ : 

10FE 

1000 
1002 

m : 
i 1070 

1074 
(S : 

lOFE 

U) 
<u 

Skip 1030 for 3.49 ms 

Skip 1072 for 1.75 ms 

1000 
j002 

s IS22 Skip 1020 

s. i 

2 103E 
W 1042 Skip 1040 for 1.16 ms 

° \Zi Skip '0F8 

10FC 
10FE 

1000 
1002 

£ 1014 
CO 1018 

lOFE 

1000 
"c S 1002 Al I addresses remain un-
o g. ; referenced for only 0.576 ms 
^ lOFE 

Skip 1016 for 5.25 ms 

Figure 22. ADDGEN4 sequence (no NOP instructions included in the loops) 
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pointed out along with the time period during which these addresses 

remain unreferenced. 

Each routine is composed of five segments, and each segment pro­

duces the hexadecimal addresses 1000 through lOFE in increments of two 

starting at 1000. It is to be pointed out again that the address line 

AQJ of the MC68000 microprocessor is used internally to select bytes. 

Therefore, address lines through Ajj are used to simulate the page 

frame address within the main memory area assigned to the LRU sub-

module. Thus, address lines through A^y can change between 0000000 

and 1111111 giving the desired 128 distinct addresses. Address line 

A^2Y is used to differentiate ROM references within the address genera­

tion circuit (A^2Y=0), and addresses that simulate main memory address 

stream Word instructions are used to produce the desired 

sequences, making A^^ insignificant to the operation. This explains 

the selected hexadecimal address range 1000 through 10FE. 

To control the address generation rate and hence the arrival rate 

at the LRU submodule, the NO OPERATION (NOP) instructions have been 

utilized to add some deliberate delay between consecutive addresses. 

The number of NOP instructions is the same in all five segments of a 

certain routine. This means that the address generation rate of a 

certain routine is almost constant. However, the number of NOP instruc­

tions used in different routines is not constant and is as follows: 

Rout i ne Number of NOP 
instructions 

ADDGENl 
ADDGEN2 
ADDGEN3 
ADDGEN4 

3 
0 
0 
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Within a certain segment, some addresses are skipped to simulate 

a page frame that is not referenced. The time period during which a 

certain address is skipped is controlled by the number of times a 

segment is repeated before moving to the next segment. Some segments 

are repeated up to eight times before moving to the next segment, 

while some segments are executed only one time followed immediately by 

the next segment. 

After all five segments are executed, the routine jumps back to the 

first segment and the process is repeated indefinitely. 

All that is required from the address generation circuit is to put 

the desired sequence of addresses on the address bus. This is done by 

making the address generation routines reference a non-existing list. 

Note that no RAM is employed in the address generation circuit. The 

routines use address register AQ as a pointer to the list. Word instruc­

tions are used to read words between addresses 1000 and lOFE (hex) into 

data register Dg. This results in the address sequence to be put on the 

address bus and directed to the LRU submodule whenever A^^j 's high. 

Experimental Data 

A total of twelve experiments have been executed. Each experiment 

corresponds to a different address generation routine and an LRU routine 

combination. The data recorded in each experiment represent the first 

64 output records produced by the LRU submodule. A record consists of 

two parts, the LRU page frame address and the time of its last reference 

(its time record). It must be noted that although 8 bits can properly 

represent the page frame address, it is more convenient to record a 16-bit 
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Table 1. Key to different experimental data tables 

ROUTINE! R0UTINE2 ROUTINES 

ADDGENl 

ADDGEN2 

ADDGEN3 

exp. 1 
Table 2 

exp. 4 
Table 5 

exp. 7 
Table 8 

exp. 2 
Table 3 

exp. 5 
Table 6 

exp. 8 
Table 9 

exp. 3 
Table 4 

exp. 6 
Table 7 

exp. 9 
Table 10 

ADDGEN4 
exp. 10 
Table 11 

exp. 11 
Table 12 

exp. 12 
Table 13 
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address word as produced by the LRU submodule to allow easy comparison 

with the address sequence produced by the address generation circuit. 

However, only the low order byte of the frame address is stored in an 

8-bit latch which is adequate for the LRU module operation. It must 

also be noted that a time record is 32 bits long (because the TIMER is 

32 bits long); however, only the low order 16 bits have been recorded 

since the high order 16 bits remain all zeros when the first 64 records 

are recorded. A time record represents a reference number rather than 

actual time. This is because the TIMER is incremented each time a valid 

address arrives to the submodule, and thus the TIMER contents represent 

the reference number. 

The data obtained in the twelve experiments are recorded in twelve 

tables. To facilitate easy reference to the data of some experiment. 

Table 1 has the experiment number and its data table number as the 

entry, with the address generation routines and the LRU routines as 

ordinates. For instance, experiment 5 used ADDGEN2 as the address 

generation routine and R0UTINE2 as the LRU routine and the table that 

contains the output data is Table 6. All data are in hexadecimal format. 

Two HP 1602 logic analyzers have been utilized to record the data. 

The data lines of both analyzers were connected to the data bus of the 

LRU submodule's microprocessor, while the signals that strobe the out­

put latches were used for clocking the analyzers appropriately. 

The first observation from the data is that the LRU submodule works 

properly. The output page address produced corresponds to some skipped 

addresses in the address sequence generated by the address generation 
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Table 2. ADDGENl and ROUTINEI (one NOP instruction) 

Address (hex) Time Address Time 

1 1030 0000 33 10A6 24AD 
2 1030 0000 34 1030 26E9 
3 1030 0000 35 1030 26 E9 
4 1010 0279 36 1010 29C9 
5 1010 0279 37 1010 24C9 
6 1010 0279 38 1072 29F8 

7 10F8 0560 39 10F8 2CB0 
8 10F8 0560 40 1016 2E39 
9 10C2 0867 41 1030 30BD 
10 1030 096D 42 1030 30BD 
11 1030 0960 43 1030 30BD 
12 1030 0960 44 1010 339D 
13 1010 0C4D 45 1010 339D 
14 1010 0C4D 46 10F8 3684 
15 10F8 0F34 47 10F8 3684 
16 1016 10BD 48 10A6 3855 
17 1030 1341 49 10C2 39DB 
18 1030 1341 50 1030 3A91 
19 1030 1341 51 1030 3A91 
20 1010 1621 52 1010 3D71 
21 1010 1621 53 1010 3D71 
22 1010 1621 54 10F8 4058 

23 10F8 1908 55 1016 41E1 
24 10F8 1908 56 1030 4465 

25 10C2 1C5F 57 1030 4465 
26 1030 1D15 58 1030 4465 

27 1030 1D15 59 1010 4745 
28 1030 1D15 60 1010 4745 
29 1010 IFF5 61 1010 4745 
30 1010 1FF5 62 10F8 4A2C 
31 10F8 22DC 63 10F8 4A2C 

32 10F8 22 DC 64 10C2 4D83 
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Table 3. ADDGEN1 and R0UTINE2 

Address (hex) Time (hex) Address Time 

1 1030 0000 33 1030 26E9 
2 1030 0000 34 1030 26E9 

3 1010 0279 35 1030 26E9 
4 1010 0279 36 1010 29C9 

5 10F8 0560 37 1010 29C9 
6 10F8 0560 38 10F8 2CB0 

7 10A6 0731 39 10F8 2CB0 
8 10C2 0867 40 1016 2E39 
9 1030 0960 41 1030 30BD 
10 1030 0960 42 1030 30BD 
11 1030 0960 43 1010 339D 
12 1010 0C4D 44 1010 3890 
13 1010 0C4D 45 10F8 3684 
14 1072 0C7C 46 10F8 3684 
15 10F8 0F34 47 10A6 3855 
16 1016 10BD 48 10C2 39DB 
17 10C2 128B 49 1030 3A91 
18 1030 1341 50 1030 3A91 
19 1030 1341 51 1030 3A91 
20 1010 1621 52 1010 3D71 
21 1010 1621 53 

54 
1010 3D71 

22 10F8 1908 
53 
54 1072 3D AO 

23 10F8 1908 55 10F8 4058 
24 10C2 1C5F 56 1016 41E1 
25 1030 1D15 57 10C2 43AF 
26 1030 1D15 58 1030 4465 
27 1030 1D15 59 1030 4465 
28 1010 1FF5 60 1030 4465 
29 1010 1FF5 61 1010 4745 
30 10F8 22DC 62 1010 4745 
31 10A6 24AD 63 10F8 4A2C 

32 10C2 2633 64 10F8 4A2C 
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Table 4. ADDGENl and ROUTINES 

Address (hex) Time Address Time 

1 1030 0000 33 1030 26E9 
2 1030 0000 34 1030 26E9 
3 1010 0279 35 1010 29C9 
4 1072 02A8 36 1072 29F8 
5 10F8 0560 37 10F8 2CB0 
6 1016 06E9 38 10A6 2E81 

7 10A6 0731 39 10C2 3007 
8 ' 10C2 0867 40 1030 30BD 
9 1030 0960 41 1030 30BD 
10 1030 0960 42 1030 30BD 
11 1060 0985 43 1010 339D 
12 1010 0C4D 44 1010 339D 
13 1010 0C4D 45 10F8 3684 
14 10F8 0F34 46 10F8 3684 
15 10F8 0F34 47 1016 3800 
16 1016 lOBD 48 1030 3A91 
17 1030 1341 49 1030 3A91 
18 1030 1341 50 1010 3D71 
19 1010 1621 51 1072 3DA1 
20 1072 1650 52 10F8 4058 
21 10F8 1908 53 10A6 4229 
22 1016 1A91 54 10C2 43AF 
23 10A6 1AD9 55 1030 4465 
24 10C2 1C5F 56 1030 4465 
25 1030 1D15 57 1030 4465 
26 1030 1D15 58 1010 4745 
27 1060 1D2D 59 1010 4745 
28 1010 1FF5 60 10F8 4A2C 

29 1010 1FF5 61 10F8 4A2C 
30 10F8 22 DC 62 1016 4BB5 

31 10F8 22DC 63 1030 4E39 
22 1016 2465 64 1030 4E39 
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Table 5- ADDGEN2 and ROUTINE! 

Address (hex) Time Address (hex) Time 

1 1030 0000 33 1016 1C30 
2 1030 0000 34 10C2 lEOO 

3 1030 0000 35 10C2 lEOO 
4 1030 0000 36 10C2 lEOO 

5 1072 0263 37 1030 2033 
6 1072 0263 38 1030 2033 

7 1072 0263 39 1030 2033 
8 10F8 04EE 40 1072 2340 
9 10F8 04EE 41 1072 2340 
10 1016 0674 42 10F8 2588 
11 10C2 0844 43 10F8 2588 
12 10C2 0844 44 1016 270E 
13 10C2 0844 45 10C2 28DE 
14 1030 0A77 46 10C2 28DE 
15 1030 0A77 47 10C2 28DE 
16 1030 0A77 48 1030 2B11 

17 1072 0D91 49 1030 2B11 
18 1072 0D91 50 1030 2B11 

19 1072 0D91 51 1030 2811 
20 10F8 OFCC 52 1072 2E2B 

21 10F8 OFCC 53 1072 2E2B 
22 1016 1152 54 10F8 3066 

23 10C2 1322 55 10F8 3066 
24 10C2 1322 56 10F8 3066 

25 10C2 1322 57 1016 31 EC 
26 1030 1555 58 10C2 33BC 
27 1030 1555 59 10C2 33BC 
28 1030 1555 60 10C2 33BC 
29 1072 186F 61 1030 35EF 
30 1072 186F 62 1030 35EF 
31 10F8 1AAA 63 1030 35EF 

32 10F8 lAAA 64 1030 35EF 
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Table 6. ADDGEN2 and R0UTINE2 

Address (hex) Time Address Time 

1 1030 0000 33 10C2 1E00 
2 1030 0000 34 10C2 1E00 

3 1030 0000 35 1030 2033 
4 1072 0263 36 1030 2033 
5 1072 0263 37 1030 2033 
6 10F8 04EE 38 1072 2340 

7 10F8 04EE 39 1072 2340 
8 10F8 04 EE 40 10F8 2588 
9 1016 0674 41 10F8 2588 
10 10C2 0844 42 1016 270E 
11 10C2 0844 43 10C2 28DE 
12 10C2 0844 44 10C2 28DE 
13 1030 0A77 45 10C2 28DE 
14 1030 0A77 46 1030 2B11 
15 1030 0A77 47 1030 2B11 
16 1030 0A77 48 1030 2B11 
17 1072 0D91 49 1072 2E2B 
18 1072 0D91 50 1072 2E2B 
19 10F8 OFCC 51 10F8 3066 
20 10F8 OFCC 52 10F8 3066 
21 1016 1152 53 10F8 3066 
22 10C2 1322 54 1016 31 EC 
23 10C2 1322 55 10C2 33BC 
24 10C2 1322 56 10C2 33BC 

25 1030 1555 57 10C2 33BC 
26 1030 1555 50 1030 35EF 
27 1030 1555 59 1030 35EF 
28 1072 186F 60 1030 35EF 
29 1072 186F 61 1030 35EF 
30 10F8 1AAA 62 1072 3909 
31 10F8 1AAA 63 1072 3909 
32 1016 1C30 64 10F8 3B44 
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Table 7- ADDGEN2 and ROUTINES 

Address (hex) Time Address Time 

1 1030 0000 33 1030 2033 
2 1030 0000 34 1072 2340 
3 1030 0000 35 1072 2340 
4 1072 0263 36 10F8 2588 
5 1072 0263 37 10F8 2588 
6 10F8 04EE 38 1016 270E 

7 10F8 04EE 39 10C2 28DE 
8 1016 0674 40 10C2 28DE 

9 10C2 0844 41 1030 2611 
10 10C2 0844 42 1030 2B11 
n 1030 0A77 43 1030 2B11 
12 1030 0A77 44 1072 2E2B 
13 1030 0A77 45 1072 2E2B 
14 1072 0D91 46 10F8 3066 
15 1072 0D91 47 10F8 3066 
16 10F8 OFCC 48 1016 31EC 
17 10F8 OFCC 49 10C2 33BC 
18 1016 1152 50 10C2 33BC 
19 10C2 1322 51 1030 35EF 
20 10C2 1322 52 1030 35EF 
21 1030 1555 53 1030 35EF 
22 1030 1555 54 1072 3909 
23 1030 1555 55 1072 3909 
24 1072 186F 56 10F8 3B44 
25 1072 186F 57 10F8 3B44 
26 10F8 lAAA 58 1016 3CCA 

27 10F8 lAAA 59 10C2 3E9A 
28 1016 1C30 60 10C2 3E9A 
29 10C2 1E00 61 1030 40CD 
30 10C2 lEOO 62 1030 40CD 
31 1030 2033 63 1030 40CD 

32 1030 2033 64 1072 43E7 
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Table 8. ADDGEN3 and ROUTINE! 

Address Time Address Time 

1 1030 0000 33 10F8 3B44 
2 1030 0000 34 10C2 3E9A 
3 1072 0263 35 10C2 3E9A 
4 10F8 04EE 36 1030 40CD 

5 10C2 0844 37 1030 40CD 
6 10C2 0844 38 1072 43E7 

7 1030 0A77 39 10F8 4622 
8 1030 0A77 40 10C2 4976 
9 1072 0D91 41 1030 4BAB 
10 10F8 OFCC 42 1030 4BAB 
11 10C2 1322 43 1072 4EC5 
12 10C2 1322 44 10F8 5100 

13 1030 1555 45 10C2 5456 
14 1030 1555 46 1030 5689 
15 1072 186F 47 1030 5689 
16 10F8 lAAA 48 1072 59A3 
17 10C2 lEOO 49 10F8 5BDE 
18 10C2 1E00 50 1016 5D64 
19 1030 2033 51 10C2 5F34 
20 1030 2033 52 1030 6167 
21 1072 2340 53 1030 6167 
22 10F8 2588 54 1072 6481 
23 10C2 28DE 55 10F8 66BC 
24 10C2 28DE 56 1016 6842 

25 1030 2B11 57 10C2 6A12 
26 1030 2B11 58 1030 6C45 
27 1072 3E2B 59 1030 6C45 
28 10F8 3066 60 1072 6F5F 

29 10C2 33BC 61 10F8 719A 
30 10C2 33BC 62 10C2 74F0 

31 1030 35EF 63 10C2 74FO 
32 1072 3909 64 
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Table 9- ADDGEN3 and R0UTINE2 

Address (hex) Time (hex) Address (hex) Time (hex) 

1 1030 0000 33 10C2 3E9A 
2 1030 0000 34 10C2 3E9A 
3 1072 0263 35 1030 40CD 
4 10F8 04EE 36 1030 40CD 

5 10C2 0844 37 1072 43E7 
6 10C2 0844 38 10F8 4622 

7 1030 0A77 39 10C2 4978 
8 1030 0A77 40 1030 4BAB 
9 1072 0D91 41 1030 4BAB 
10 10F8 OFCC 42 1072 4EC5 
n 10C2 1322 43 10F8 5100 
12 10C2 1322 44 10C2 5456 
13 1030 1555 45 10C2 5456 
14 1030 1555 46 1030 5689 
15 1072 186F 47 1030 5689 
16 10F8 lAAA 48 1072 59A3 
17 10C2 lEOO 49 10F8 5BDE 
18 1030 2033 50 10C2 5F34 
19 1030 2033 51 1030 6167 
20 1072 234D 52 1030 6167 
21 10F8 2588 53 1072 6481 
22 10C2 28DE 54 10F8 66BC 

23 10C2 28DE 55 10C2 6A12 
24 1030 2B11 56 10C2 6A12 
25 1030 2B11 57 1030 6C45 
26 1072 2E2B 58 1030 6C45 
27 10F8 3066 59 1072 6F5F 
28 10C2 33BC 60 10F8 719A 
29 1030 35EF 61 10C2 74F0 
30 1030 35EF 62 1030 7723 
31 1072 3909 63 1030 7723 
32 10F8 3B44 64 1072 7A3D 
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Table 10. ADDGEN3 and R0UTINE3 

Address (hex) Time (hex) Address Time 

1 1030 0000 33 1030 40CD 
2 1030 0000 34 1072 43E7 

3 1072 0263 35 10F8 4622 
4 10F8 04EE 36 10C2 4978 
5 10C2 0844 37 10C2 4978 
6 1030 0A77 38 1030 4BAB 
7 1030 0A77 39 1072 4EC5 
8 1072 0D91 40 10F8 5100 

9 10F8 OFCC 41 10C2 5456 
10 10C2 1322 42 10C2 5456 
11 10C2 1322 43 1030 5689 

12 1030 1555 44 1072 59A3 
13 1030 1555 45 10F8 5BDE 
14 1072 186F 46 10C2 5F34 
15 10F8 lAAA 47 10C2 5F34 
16 10C2 lEOO 48 1030 6167 

17 10C2 lEOO 49 1072 6481 
18 1030 2033 50 10F8 66BC 

19 1072 2340 51 10C2 6A12 
20 10F8 2588 52 10C2 6A12 

21 10C2 28DE 53 1030 6C45 
22 10C2 28DE 54 1072 6F5F 
23 1030 2B11 55 10F8 719A 
24 1072 2E2B 56 10C2 74F0 
25 10F8 3066 57 10C2 74F0 
26 10C2 33BC 58 1030 7723 
27 10C2 33BC 59 1072 7A3D 
28 1030 35EF 60 10F8 7C78 
29 1072 3909 61 10C2 7FCE 

30 10F8 3B44 62 10C2 7FCE 
31 10C2 3E9A 63 1030 8201 

32 10C2 3E9A 64 1072 851B 
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Table 11. ADDGEN4 and R0UTINE1 

Address (hex) Time (hex) Address Time 

1 1030 OOOO 33 1016 3902 
2 1030 OOOO 34 1016 3902 
3 1072 02 B3 35 1030 3E03 
4 1016 04FF 36 1030 3E03 

5 1016 04FF 37 1016 4369 
6 1016 04FF 38 1016 4369 

7 1030 OAOO 39 1016 4369 
8 1030 OAOO 40 1030 486A 
9 1072 0D1A 41 1030 486A 
10 1016 0F66 42 1072 4B84 
11 1016 0F66 43 1016 4DD0 
12 1016 0F66 44 1016 4DD0 
13 1030 1467 45 1016 4DD0 

14 1030 1467 46 1030 52D1 
15 1016 19CD 47 1030 52D1 
16 1016 19CD 48 1016 5837 
17 1016 19CD 49 1016 5837 
18 1030 1ECE 50 1016 5837 
19 1030 lECE 51 1030 5038 
20 1072 21E8 52 1030 5038 
21 1016 2434 53 1072 6052 
21 1016 2434 53 1072 6052 

22 1016 2434 54 1016 629E 
23 1016 2434 55 1016 629E 
24 1030 2935 56 1016 629E 

25 1030 2935 57 1030 679F 
26 1016 2E9B 58 1030 679F 

27 1016 2E9B 59 1016 6005 
28 1016 2E9B 60 1016 6005 

29 1030 339C 61 1016 6005 
30 1030 339C 62 1030 7206 

31 1072 36B6 63 1030 7206 
32 1016 3902 64 1072 7520 
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Table 12. ADDGEN4 and ROUTINEZ 

Address (hex) Time (hex) Address Time 

1 1030 0000 33 1016 3902 
z 1030 0000 34 1016 3902 
3 1016 04FF 35 1016 3902 
4 1016 04FF 36 1030 3E03 
5 1016 04FF 37 1030 3E03 
6 1030 OAOO 38 10F8 42DD 

7 1030 OAOO 39 1016 4369 
8 10F8 OEDA 40 1016 4369 
9 1016 0F66 41 1016 4369 
10 1016 0F66 42 1030 486A 
11 1016 0F66 43 1030 486A 
1Z 1030 1467 44 10F8 4D44 
13 1030 1467 45 1016 4DD0 
14 10F8 1941 46 1016 4DD0 
15 1016 19CD 47 1016 4DD0 
16 1016 19CD 48 1030 52D1 
17 1016 19CD 49 1030 52D1 
18 1030 lECE 50 10F8 57AB 
19 1030 lECE 51 1016 5837 
ZO 10F8 23A8 52 1016 5837 
Z1 1016 2434 53 1016 5837 
ZZ 1016 2434 54 1030 5038 
23 1016 2434 55 1030 5038 
Z4 1030 2935 56 10F8 6212 
25 1030 2935 57 1016 629E 
Z6 10F8 2E0F 58 1016 629E 

27 1016 2E9B 59 1016 629E 
Z8 1016 w#9B 60 1030 679F 
Z9 1016 2E9B 61 1030 679F 
30 1030 339C 62 10F8 6C79 
31 1030 339C 63 1016 6005 

32 10F8 3876 64 1016 6005 
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Table 13. ADDGEN4 and ROUTINES 

Address Time Address Time 

1 1030 0000 33 1016 3902 
2 1030 0000 34 1016 3902 
3 10F8 0473 35 1016 3902 
4 1016 04FF 36 1016 3902 
5 1016 04FF 37 1030 3E03 
6 1016 04FF 38 1030 3E03 

7 1030 OAOO 39 10F8 42dd 
8 1072 0D1A 40 1016 4369 
9 1016 0F66 41 1016 4369 
10 1016 0F66 42 1016 4369 
11 1016 0F66 43 1030 486A 
12 1030 1467 44 1072 4B84 
13 1030 1467 45 1016 4DD0 
14 1072 1781 46 1016 4DD0 
15 1016 19CD 47 1016 4DD0 
16 1016 19CD 48 1030 52D1 
17 1016 19CD 49 1030 52D1 
18 1016 19CD 50 1072 55EB 
19 1030 lECE 51 1016 5837 
20 1030 lECE 52 1016 5837 
21 10F8 23A8 53 1016 5837 
22 1016 2434 54 1016 5837 
23 1016 2434 55 1030 5038 
24 1016 2434 56 1030 5038 

25 1030 2935 57 10F8 6212 
26 1072 3C4F 58 1016 629E 
27 1016 2E96 59 1016 629E 
28 1016 2E9B 60 1016 629E 
29 1016 2E9B 61 1030 679F 
30 1030 339C 62 1072 6AB9 
31 1030 339C 63 1016 6005 
32 1072 3686 64 1016 6D05 
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circuit. As discussed in Chapter 5, the LRU routines check the validity 

of a record before producing it as an output. This can be noticed from 

the different experiments, since in no case has a page address been 

produced as an output without being one of the skipped addresses in 

the generated address sequences. 

Because the LRU submodule works asynchronously with the address 

generation module, it can be observed that the output record sequence 

is not exactly repetitive although the address sequence directed to the 

submodule is repetitive. 

The time interval between two consecutive addresses has been calcu­

lated for the four address generation routines. With a 6MHZ clock, the 

time intervals are: 

These time intervals are calculated rather than measured and the inter­

ference with the LRU submodule is not taken into consideration. Inter­

ference has also not been considered in calculating the time periods 

during which some addresses are skipped as shown in Figures 22 through 

25- Although the delay due to the interference with the LRU submodule 

has not been considered, the numbers provide good ground for comparison. 

Also, it is true that for any system to be supported by an LRU module, 

the figures describing the system speed and address stream are likely to 

assume conflict free operation. 

The data obtained from the twelve experiments provide a basis to 

ADDGENl 
ADDGEN2 
ADDGEN3 
ADDGEN4 

5.3 ys 

3.66ns 
2.83ns 
2.83ys 
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compare the performance of different LRU routines. Although 64 records 

per experiment are not large enough to draw any statistical conclu­

sions, it has been observed that there is no major difference in the 

data when a relatively large number of records is recorded. The reason 

is that the whole address stream generated by a certain routine is 

repetitive and the only factor that might alter the output data is the 

relative arrival times for RAM access requests from the address genera­

tion circuit and the LRU submodule. 

In the following section, some statistical data that relate to 

the performance of the three LRU routines described earlier under dif­

ferent arrival rates are introduced. The major comparison figure will 

be the probability that an output is produced by the LRU submodule 

under different arrival rates and different time periods, during which 

a simulated page frame is not referenced. Table 14 summarizes the 

performance of ROUTI NE1 which keeps only one LRU record internally 

under different arrival rates. It can be noticed that it performs 

better with slower address arrival rates. It can also be seen that any 

page frame not referenced for 2.17 ms or more is outputted with a proba­

bility of one as long as it is the oldest referenced page frame. It is 

worth pointing out that with ADDGEN4 address 1030 hex is skipped for 

about 3.49 ms and has always been produced as an output two consecutive 

times. This emphasizes that 2.17 ms is enough time period for the LRU 

submodule when running ROUT I NE1 to produce a correct output. It is 

interesting to note that when two or more addresses are skipped in a 

certain segment of an address generation routine, the lowest of these 
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Table 14. Performance of ROUTI NE1 

Address 
generation 
routine 
(arrival 
rate) 

Time 
period 
address 

is 
skipped 

Proba-
bi1i ty 
of 

being 
outputted 

ADDGENl 1.4 ms 0.5 

(5.34 ys) 2.05 ms 0.625 

2.73 ms 
or more 

1.0 

ADDGEN2 

(6.7 us) 2.7 ms 
or more 

1.0 

ADDGEN3 

(3.5 ys) 1.728 ms 0.09 

2.17 ms 
or more 

1.0 

A0DGEN4 1.16 ms 0.0 

(3.5 Tis) 1.75 ms 0.566 

3.49 ms 
or more 

1.0 
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addresses is the LRU address because all four address generation routines 

reference lower addresses before higher ones. In no case has an 

address other than the lowest skipped address been produced as the out­

put of the LRU submodule when running ROUTINEl. This is because 

ROUTINEl keeps only one record inside the microprocessor. This 

implies that after the search and the validity check, if the record is 

not valid, no output is produced and the routine starts a new search. 

In such a case, it is certain that by the end of the new search, none 

of the higher order addresses would still be valid since the search 

time is longer than the time needed to execute an address generator 

segment. Moreover, since an invalid record means that the address 

generation routine has moved to a new segment, it is certain that 

the output is the lowest skipped address or none at all in a single 

ROUTINEl execution. 

The same kind of analysis can be applied to the performance 

statistics of R0UTINE2 shown in Table 15. The statistics shown for the 

ADDGEN4 and ROUTINEZ combination may look strange. An address skipped 

for 1.16 ms has a probability of 0.909 of being outputted, whereas an­

other address skipped for 1.75 ms has a probability of zero of being 

outputted. To explain, it must be said that in the performed experi­

ments, a page frame with higher address has a better chance of being 

produced as the output of the LRU submodule than a lower address provided 

that it is the actual LRU frame. The reason is that the address genera­

tion routines scan the addresses from low to high. Thus, if the search 

ends with two LRU records, the probability that higher address would 
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Table 15. Performance of ROUTINE! 

Address Time P roba-
generation period bility 
routine address of 

(address/ is being 
time) skipped outputted 

ADDGENl 

(address/5.34 )js) 1.4 ms 0.866 

2.05 ms 0.866 

2.73 ms 1.0 
or more 

ADDGEN2 

(address/6.7 ps) 2.7 ms 1.0 
or more 

ADDGEN3 1.728 ms 0.0 

(address/3.5 lis) 2.17 ms 1.0 
or more 

ADDGEN4 

(address/3.5 ps) 1.16 ms 0.909 

1.75 ms 0.0 

3.49 ms 1.0 
or more 
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still be valid is higher than the probability that the lower address 

would still be valid. This is particularly true if the address 

generation segment which skips these addresses is executed only one 

time. This is the case with segment 3 of ADDGENA in which the hex 

addresses 1020, 1040, and 10F8 are skipped.. Since the segment is 

executed only one time, the mentioned addresses are not referenced for 

1.16 ms. Address 10F8, thus, has the highest probability of being 

outputted for the mentioned reason. Thus, there is a strong relation­

ship between the probability of outputting a certain page frame address 

and its location in main memory only if the LRU page frame is not 

referenced for less than 2.17 ms. This does not imply that the LRU 

submodule is producing a wrong result since at the time an output is 

produced address 10F8, in the above case, is the actual LRU frame 

address. It is to be noted that in an actual LRU support module situa­

tion, the order in which page frames are referenced is rather more 

random than in ascending order as in the test experiments. 

It is worth noticing that address 1030 hex which remains unrefer­

enced for 3.49 ms is outputted two consecutive times in all recorded 

cases when ROUT INE2 and ADDGEN4 are used. However, as with ROUTINE!, 

a skipping period of 2.17 ms of some page address makes it certain that 

the frame address would be the LRU submodule's output provided that it 

is the oldest referenced frame. 

The performance statistics of ROUTINES are shown in Table 16. 

There is no great difference in the performance of the three LRU 

routines considered, and any one of them is capable of producing any 
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Table 16. R0UTINE3 performance statistics 

Address Time Proba-
generation period bility 
routine address of 

(address/ is being 
us) skipped outputted 

AODGENl 

(address/5.34 jis) 1.4 ms 

2.05 ms 

2.73 ms 
or more 

0.5 

0.5-0.75 
(depend­
ing on 
address) 

1.0 

AD0GEN2 

(address/6.7 ps) 2.7 ms 
or more 

1.0 

ADDGEN3 

(address/3.5 ]Js) 

1.728 ms 

2.17 ms 
or more 

0 .0  

1.0 

ADDGEN4 

(address/3.5 us) 

1.16 ms 

1.75 ms 

3.49 ms 
or more 

0.40 

0.60 

1.0 
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page frame number as an output with a probability of one if it remains 

unreferenced for 2.17 ms or more, provided that it is the oldest 

referenced frame. However, it seems that R0UTINE2 is superior to both 

ROUTI NE1 and R0UTINE3 because it executes faster than ROUTINES and it 

will output some page addresses that might be missed by ROUTINE!. For 

instance, it takes ROUTINES about eleven repetitions of ADDGENl to pro­

duce 64 output records, whereas it takes R0UTINE2 about 8 ̂  repetitions 

of ADDGENl to produce 64 output records. In comparison with ROUT I NE 1, 

it is clear that whenever two addresses are skipped in one address 

generation routine segment, the probabi1ity that the higher address 

will be outputted by R0UTINE2 is certainly higher than that with 

ROUT I NE1. For example, if we compare the data obtained in experiments 

1 and 2, it can be seen that the probability that address 1072, which 

is skipped in the second segment of ADDGENl along with address 1010, 

has a higher chance of being outputted with R0UTINE2 than with ROUT I NE1. 

Remarks and Observations 

It has been observed experimentally that the time between two 

consecutive LRU outputs ranged between 1.5 ms and 2.75 ms. If we 

assume that the average time interval needed to produce an output is 

around 2.25 ms, it is possible to use the 8 MHZ version of the MC68000 

microprocessor and have an output every approximately 1.69 ms. This 

output rate is actually faster than one would really need. This is 

because a computer system would not transfer pages to main memory at 

this rate, especially since it might take a modern disk 10 ms or more 
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to transfer a page [23]. To make use of this fact, one may suggest 

increasing the number of page frames assigned to a submodule to 256 

or even 512 instead of 128 without jeopardizing the performance. 

This in effect means cutting the number of submodules to one-half or 

one-fourth the number when 128 pages are assigned to a submodule. 

A better idea is to try to reduce the amount of loading the LRU module 

represents on the main system. This idea will now be discussed in 

detai1. 

Reducing LRU module loading on main system 

The LRU module is supposed to support the main system by performing 

the function of finding the least recently used page frame in main 

memory. In an ideal situation, the LRU module should work in total 

parallelism with the main system without any kind of interference. In 

our design, we used straight arbitration to solve the submodule's RAM 

access conflicts as discussed earlier. In our design, the probability 

that the main system will be forced to wait until a microprocessor com­

pletes a read cycle is estimated to be less than 1%. This is based on 

the fact that the microprocessor accesses the RAM on the average less 

than 20% of the time, and based also on the reasonable assumption that 

on the average a certain page will be accessed 20 consecutive times 

before switching to another page. Hence, only 1/20 of the addresses 

will actually reach the LRU module because of the filtering circuit 

effect. However, it is possible to use the designed circuit to 

support a main system that is two times faster. This is because with 
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an 8 MHZ microprocessor, a RAM cycle would take about 500 ns, while 

the TIMER-RAM combination can work at a speed that would allow access 

every 250 ns. Thus, a 1% interference would actually become a 2% delay 

since the main system would have to wait for a memory cycle that is 

two times longer than its memory cycle. 

One possible technique to reduce the interference by about 50% 

is to use the BUS ERROR (BERR) processing exhibited by the MC68000 

microprocessor [22]. The MC68000 will repeat the bus cycle if the 

BERR and the HALT signals are activated at least 50 ns before the 

DTACK signal is received. This feature can be utilized to give the 

main system higher access priority to a submodule's RAM than the 

microprocessor. A timing diagram of an MC68000 word read cycle with 

two wait states (as is the case in our circuit) is shown in Figure 29. 

The time period X is the period during which any attempt to force the 

microprocessor to repeat the bus cycle would be too late and the read 

cycle has to be completed. However, any request to copy the TIMER into 

the RAM arriving during the time period marked Y can be granted immedi­

ately by utilizing the bus error feature. In such a case, the hard­

ware logic must be designed to activate the BERR and HALT signals 

and at the same time put all the submodule's 3-state buffers in the 

high impedance state. This would cause the MC68000 to repeat the bus 

cycle immediately after the current bus cycle is completed. There is 

no limitation on repeating the bus cycle as long as the mentioned timing 

requirements are met. This allows a certain bus cycle to be repeated 

several times if the BERR and HALT signals are activated properly every 
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time. 

It is clear that the added logic must also cause the main system 

to wait if the RAM access request is received during the period X. To 

simplify the extra hardware and guarantee proper operation, the 50 ns 

period mentioned can be increased to one-half a clock period (62.5 ns 

at 8 MHZ). This is also shown in Figure 29 and indicates that one-half 

of potential main system delays have been eliminated by deciding con­

flicts in the period marked X in favor of the main system, and thus 

reducing the interference load on the main system by 50%. 

Fortunately the RAM cycles that have to be aborted with such a 

technique are read cycles and not write cycles. Thus, the technique 

is feasible and the extra hardware needed is expected to be simple. 

It would be nice if a microprocessor were developed that had a 

bus error feature as the MC68000 but without timing constraints. In 

other words, if a bus error signal arrived anywhere during the bus 

cycle, it would still cause the processor to repeat the bus cycle. It 

might seem impractical to ask for such a microprocessor, but it is 

actually not. Such a microprocessor would open a new era in multi-

microprocessor systems in general. It would simplify to a great extent 

the controlling of access to shared resources by simply granting the 

access to the first requester and causing all subsequent requesters 

during the cycle to try again. It would also simplify dynamic priority 

scheduling by allowing the highest priority processor free access to 

a resource, while forcing the others to repeat their bus cycles should 

a conflict arise. The priority can be changed dynamically by 
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rearranging the access rights. This should result in a very efficient 

utilization of a common resource since no arbitration time is needed 

every cycle as is the case in conventional systems. 

A zero load LRU module 

Thinking about a microprocessor with a bus error feature as 

described above leads to the idea of implementing the bus error feature 

external to the microprocessor with some software help. The idea is 

to allow the time recording process to start at any time without any 

constraints, and at the same time let the microprocessor check the 

correctness of its read cycle after its completion. Some hardware has 

to detect the arrival of a time recording signal and tri-state all 

RAM buffers on the microprocessor side. On the other hand, a special 

signal that starts with the start of microprocessor RAM cycle and ends 

Y clock period after the end of the cycle has to be generated and used 

to set a special flip-flop whenever a time write signal arrives while 

the mentioned signal is active. If the flip-flop is set, the micro'-

processor repeats the same cycle. If the flip-flop is found clear, the 

microprocessor proceeds without need to repeat the read cycle. It is 

possible that a certain cycle can be repeated several times before the 

flip-flop is found clear. Since RAM long word instructions require 

two consecutive word read cycles to the RAM, it is only possible to 

repeat booth read cycles. In such a case, the flip-flop would be set 

should a conflict occur during any of the two cycles. 

Another alternative is to queue the filtered addresses at the sub-

module and pass addresses in a way similar to Direct Memory Access 
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(DMA) operation. 

An even simpler approach is to let the microprocessor perform 

each RAM read instruction two consecutive times and then compare the 

values read. If a match is found, it proceeds to the next instruction. 

If no match is found, the process is repeated until a match is found. 

One possible source of error in such a technique is that it is likely 

that the microprocessor would read a tri-stated buffer as an all-ones 

word. Thus, it is necessary to make sure that the matched words are 

not all-ones words. Of course, other sources of error such as criti­

cal timing almost always exist and must be taken into consideration. 

It might still be acceptable to have LRU submodules that produce 

output at a four times slower rate than the one we built. In such a 

case, the last approach, although slow, may be acceptable. 
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CHAPTER VII. CONCLUSION 

Since the operating system is a very costly part of a computer 

system in terms of both the initial cost and the operational cost, 

it has been found that an approach to support the operating system 

using modern microprocessors is worth studying. 

An approach to support and parallel process some operating system 

functions has been introduced. The technique utilizes existing, inex­

pensive, and powerful microprocessors to support operating system 

functions that lend themselves to parallel processing. The support 

system consists of several modules, each of which performs some operat­

ing system function and communicates with the supported system through 

a small, dedicated main memory area called a communication area. The 

proposed technique is general and can be used to support systems under 

design as well as systems in operation. It also can be utilized in 

single processor, as well as multi-processor systems with shared memory. 

The cost, reliability, and other aspects have been studied. Some possi­

ble advantages of applying the proposed technique can be summarized as 

fol lows: 

(1) It is possible to reduce the operating system CPU time re­

quirements by parallel processing many of its functions. 

This is particularly attractive in the case of modularly 

structured operating systems as most current systems are. 

Reducing operating system CPU time requirements would mean 

that more CPU time is available for productive work. 
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It is possible to reduce operating system complexity by 

adopting simpler functional algorithms. This is because in 

many cases the designer is forced to design more complicated 

algorithms merely to reduce the execution overhead. Since 

the support approach has as a major concern the reduction 

of the overhead, it is possible to go for simpler algorithms 

which might perform better with support than more complicated 

ones without support. This would reduce to some extent the 

overall software complexity, and hence the overall system 

initial cost. 

It is possible to perform some tasks that are currently con­

sidered impractical because their overhead is unacceptable. 

For instance, the exact implementation of the Least Recently 

Used (LRU) replacement policy in demand paging memory manage­

ment systems is believed to be "not feasible" because of its 

overhead. 

Some support modules may be assigned monitoring and per­

formance measurement functions. These modules may then sub­

mit reports to the main system which uses the reports to 

adjust dynamically or "fine tune" some operating system 

parameters. Some of these parameters might be: 

(a) Working set size, 

(b) Page/sector size, 

(c) Bus allocation scheme. 

This would enhance system performance since the parameters 



www.manaraa.com

112 

are fine tuned to optimize the performance according to 

actual working conditions on line rather than being fixed 

at certain value during the design phase. 

To prove, at least, some of the above-mentioned points, two specific 

applications have been invented as examples. The first is a support 

module for a deadlock avoidance scheme. In this application, theoreti­

cal study as well as a possible design of the module have been given. 

The second application is the exact implementation of the Least Recently 

Used replacement policy in a demand paging memory management system. 

In this case, a submodule has been designed, built, and tested. 

Since deadlock avoidance schemes incur high overhead, it has been 

predicted that in the near future the deadlock problem will acquire 

greater attention. This is especially true in systems sharing an 

increasing number of individual users, and in systems which provide 

a large set of files or data bases for many users with different access 

rights. This is the motive behind considering deadlock avoidance schemes 

as an application example of the proposed approach. Many deadlock 

avoidance algorithms differing significantly in the degree of complexity 

and in the amount of overhead incurred are already available. However, 

in all cases the overhead gets unacceptable as the number of active 

processes in the system, say (m), gets larger than some value. 

Habermann's model is considered an extreme model because the amount of 

advance information about process resource requirements is very small 

compared to other algorithms [14, 17]. The algorithm is relatively 

simple but its execution time is 0(m^), where m is the number of 
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processes. As m gets larger than five, the overhead becomes unaccept­

able. The algorithm, however, is much simpler than many other 

algorithms that trade simplicity for some overhead savings. Habermann's 

algorithm was selected for modular microprocessor-based support just 

to prove that simple algorithms can be supported to give better per­

formance than many other more complicated algorithms without the 

support. 

Design outlines for three support modules have been given. The 

first module contains tiH-l microprocessors in which m microprocessors 

serve the m processes and one microprocessor serves as a supervisor. 

The module executes Habermann's algorithm with execution time 0(m) 

instead of O(m^) without the support module. With support, the number 

of processes can be increased to 25 and the overhead may still be 

acceptable. Moreover, the algorithm is executed almost totally on the 

support module alleviating almost completely the whole overhead problem 

from the main CPU(s). If the amount of hardware in the support module 

is considered unacceptably high, a process microprocessor could be 

assigned say k processes instead of only one reducing the number of 

required microprocessors to^+1. However, the execution time in 

such a case is 0(km), where k is an integer greater than one. This 

corresponds to the second support module presented. The third support 

module is applicable only in systems with small m and has an execution 

time 0(km), where k is a positive fraction. The module uses only one 

microprocessor. 

Thus, the first application example proves the practicality and 
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feasibility of the support approach even when simple algorithms are 

adopted. It also proves points 1 and 2 mentioned earlier in this 

chapter when the possible advantages of the approach were discussed. 

The second application example deals with the exact implementation 

of the Least Recently Used (LRU) replacement policy. Theoretical and 

simulation studies demonstrated the superiority of the LRU replacement 

policy over all other practical replacement policies. However, it was 

believed that the exact implementation of the LRU was "not feasible" 

because of its tremendous overhead. Therefore, many systems tried to 

approximate the LRU. The Least Frequently Used (LFU), and the second 

chance or MULT ICS, are two examples of such approximations. The LFU 

incurrs high overhead because the whole page table has to be searched 

every time a page fault occurs. The MULTICS exhibits less overhead 

than the LFU; however, it is still an approximation. 

The author has described in detail the design of a microprocessor-

based module for the exact implementation of the LRU replacement policy 

in a demand paging system. The idea is to divide main memory into n 

equal areas and assign each area to a submodule that runs an exact LRU 

routine to find out the LRU page frame address in its assigned area. 

One TIMER for the whole module is utilized in recording reference times 

to different page frames. Each submodule contains an MC68000 micro­

processor, ROM, RAM, buffering chips, and some control logic. The 

microprocessor reads the routine from the ROM while the RAM stores the 

reference time records of pages assigned to the submodule. Each sub-

module outputs the area LRU frame address along with its time record 
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into some output latches. One supervisor submodule searches the out­

puts produced by other submodules and finds out the overall LRU frame 

address. Moreover, the supervisor has to communicate with the main 

system via a communication area. Thus, the LRU module is composed of 

n+1 submodules with one microprocessor in each submodule. 

An LRU submodule has been designed, built, and tested. The sub-

module uses the MC68000 microprocessor to run the exact LRU routine. 

To test the submodule, it was essential to design an address stream 

generation module. Another MC68000 microprocessor has been utilized 

in building the address generation module. Three LRU routines and 

four address generation routines have been designed to allow extensive 

testing of the LRU submodule performance. 

The LRU demonstrated good performance and produced correct outputs 

less than 3 ms apart. The submodule was assigned 128 page frames and 

ran at a frequency of 6 MHZ. It turned out that if the new 10 MHZ 

version of the MC68000 were used, the outputs would be about 1.5 ms 

apart. This would be a faster rate than most systems would need, and 

increasing the number of page frames to 512 would cause the submodule 

output rate to be about four times slower than the 128 page frames 

case. This would still be acceptable in most systems because a modern 

disk may take up to 10 ms to transfer a page to main memory [23]. 

The cost of a whole LRU module supporting a 1024 page frame memory 

would be less than $3,000, which is almost negligible compared to the 

cost of a multiprogramming computer system. The size of the LRU module 

should be small enough to fit nicely inside a modern disk drive, making 
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it a "smart disk." 

The loading effect of the LRU module has also been discussed (main 

system's delay because of the LRU module). It has been found that 

any of several techniques could be used to reduce the loading effect 

to zero. 
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APPENDIX A. ROUTINE! 

"68000" 
9 EXACT LRU PROGRAM "ROUTINEl" 

ORG 0000 
HEX 000,2300,000,400 ;ALL ADDRESSES ARE IN HEX 
HEX 000,ODOO,000,OEOO 
ORG 400H 

INIT MOVE.L #700H,SR ; INITIALIZE STATUS REGISTER 
MOVE.L #0,A0 
MOVE.L #22000H,A6 ; INITIALIZE A5 & A6 FOR 
MOVE.L #22200H,A5 ; CLEARING ALL RECORDS. 
CLR.L D7 

LI MOVE.L D7,-[A5] ;CLEAR ALL 128 TIME RECORDS 
CMPA.L A6,A5 ;IN THIS LOOP. 
BNE LI 
MOVE.L #2200H,A5 ; INITIALIZE AS TO HIGHEST ADD+4 
MOVE.L #2000H,A6 ;AND A6 TO THE LOWEST ADDRESS. 

SEARCH MOVE.L -[A5],D0 ; INITIALIZE THE SEARCH BY KEEPING 
MOVE.W A5,A0 ;THE FIRST RECORD INTERNALLY. 

NSRCH MOVE.L -[A5],D7 ;NORMAL SEARCH. 
CMP.L D0,D7 ;IF NEW RECORO>OLD ONE: IGNORE IT 
BHI TSTEND ;BY BRANCHING TO TESTEND. 
MOVE.L D7,D0 ;KEEP NEW RECORD AND ITS ADDRESS. 
MOVE.W A5,A0 

TSTEND COMPA.L A5,A6 ;ALL 128 RECORDS SEARCHED ? 
BNE NSRCH ;IF NOT : GO BACK TO NORMAL SEARCH 

OUTPUT CMP.L [AO],DO ;CHECK VALIDITY OF LRU RECORD. 
BNE ENDOUT ; IF NOT VALID : DO NOT OUTPUT. 
MOVE.L A0,D4 
LSR.L #1,D4 
MOVE.W D4,4000H ;OUTPUT LRU FRAME ADDRESS. 
MOVE.L D0,4010H ;OUTPUT ITS TIME RECORD. 

ENDOUT MOVE.W #2200H,A5 ; REINITIALIZE A5 
BRA SEARCH ;ALWAYS GO BACK TO THE NORMAL 

; SEARCH. 

ORG CDOOH ;BUS ERROR HANDLER. 
BUSERR MOVE.L #0FFFFFFFFH,4010H 

MOVE.L #400H,0CH[A7] 
RTE 

ORG OEOOH ;ADDRESS ERROR HANDLER. 
ADDERR MOVE.L #0FFFFFFFFH,4010H 

MOVE.L #400H,0CH[A7] 
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APPENDIX B. R0UTINE2 

; EXACT LRU PROGRAM "R0UTINE2 
ORG OOOH 
HEX 000,2300,000,400 
HEX 000,0D)),000,0E00 
ORG 400H 

INIT MOVE.W #700H,SR 
MOVE.L #0,A0 
MOVE.L #0,A1 
MOVE.L #0,A2 
MOVE.L #22200H,A5 
MOVE.L #22000H,A6 
CLR.L D7 

LI MOVE.L D7.-[A5] 
CMPA.L A6,A5 
BHI LI 
MOVE.L #2200H,A5 
MOVE.L #2000H,A6 

SEARCH MOVE.L -[A5],D0 
MOVE.W A5,A0 
MOVE.L -[A5l,D7 
CMP.L D0,D7 
BHI L2 
MOVE.L D0,D1 
MOVE.W A0,A1 
MOVE.L D7,D0 
MOVE.W A5,A0 
BRA NSRCH 

L2 MOVE.L D7,01 
MOVE.W A5,A1 

NSRCH MOVE.L -[A5],D7 
CMP.L D1,D7 
BHI TSTEND 
CMP.L D0,D7 
BHI L3 
MOVE.L D0,D1 
MOVE.W A0,A1 
MOVE.L D7,D0 
MOVE.W A5,A0 
BRA TSTEND 

L3 MOVE.L D7,D1 
MOVE.W A5,A1 

TSTEND CMPA.L A5,A6 
BNE NSRCH 

; INITIALIZE STATUS REGISTER. 
; CLEAR AO THRU A2. 

LOAD A5 WITH HIGHEST ADDR+4. 
LOAD A6 WITH LOWEST ADDRESS. 
NOTE THAT AI? IS ACTIVE DURING 
RECORD INITIALIZATION. 
INITIALIZE ALL RECORDS TO ALL 
ZEROS. 
INITIALIZE A5 &A6 FOR READ. 

READ FIRST TWO RECORDS AND 
ORDER THEM SUCH THAT DO HOLDS 
THE OLDER TIME RECORD WITH AO 
HOLDING ITS ADDRESS. 
D1&A1 SHOULD HOLD THE OTHER 
RECORD AND ITS ADDRESS. 

"NORMAL SEARCH" 
READ RECORD INTO D7 AND COMPARE 
IT WITH D1 IF IT IS HIGHER; 
DISCARD IT. IF NOT HIGHER : 
DISCARD D1 &A1 AND REORDER THE 
LIST IN THE SAME WAY AS BEFORE. 

;ALL 128 RECORDS SEARCHED? 
;IF NOT GO BACK TO NSRCH. 
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OUTPUT CMP.L [AO],DO CHECK THE VALIDITY OF THE 
BNE L4 LRU RECORD. IF NOT VALID 60 TO 
MOVE.L A0,D4 L4 TO CHECK THE OTHER RECORD. 
LSR.L #1,D4 ONE BIT SHIFT RIGHT MAPS ADDR 
MOVE.W D4,4000H TO INPUT STREAM AREA. OUTPUT 
MOVE.L D0,4010H LRU ADDRESS AND TIME RECORD. 
BRA ENDOUT GO TO ENDOUT. 

L4 CMP.L [A1],D1 CHECK THE VALIDITY OF THE 2nd 
BNE ENDOUT LRU RECORD :OUTPUT IF VALID. 
MOVE.L A1,D4 
LSR.L #1,D4 
MOVE.W D4,4000H 
MOVE.L D1,4010H 

ENDOUT MOVE.W #2200H,A5 ; REINITIALIZE A5 AND GO BACK TO 
BRA SEARCH ;START A NEW SEARCH 

ORG ODOOH 
BUSERR MOVE.L #0FFFFFFFFH,4010H ;BUS ERROR HANDLER. 

MOVE.L #0400H,0CH[A7] 
RTE 

ORG OEOOH ;ADDRESS ERROR HANDLER. 
ADERR MOVE.L #0FFFFFFFFH,4010H 

MOVE.L #0400H,0CH[A7] 
RTE 
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APPENDIX C. ADDGEN1 

"6800" 
; ADDRESS GENERATION ROUTINE "ADDGEN1" 

ORG OOOH 
HEX 0000,2300 
HEX 0000,0400 NOTE;ALL ADDRESSES ARE 
ORG 400H IN HEXADECIMAL. 
MOVE #0700H,SR INITIALIZE STATUS REGISTER 
MOVE.L #1100H,A2 INITIALIZE A2 TO HIGHEST 

INIT MOVE.L #1OOOH,AO ADDRESS IN THE LIST+2, 
MOVE.W #5.D2 AND AO TO LOWEST ADDRESS. 
MOVE.W #4,D3 D2 THROUGH D6 HOLD THE 
MOVE.W #3,D4 No OF TIMES DIFFERENT 
MOVE.W #2,D5 SEGMENTS ARE REPEATED. 
MOVE.W #1.D6 

SEGM1 MOVE.L #1030H,A1 "SEGMENTl" 
MOVE.L #1060H,A3 ADDRESSES 1030,1060,AND 
MOVE.L #1090H,A4 1090 WILL BE SKIPPED. 

LOOPl MOVE.W [AO]+,DO 
NOP 
CMPA.W A0,A1 
BNE LOOPl 
ADD #02H,A0 ;SKIP 1030. 

L00P2 MOVE.W [AO]+,DO 
NOP 
CMPA.W AO, A3 
BNE L00P2 
ADD #02H,A0 ;SKIP 1060. 

L00P3 MOVE.W [AO]+,DO 
NOP 
CMPA.W AO, A4 
BNE L00P3 
ADD #02H,A0 ;SKIP 1090. 

L00P4 MOVE.W [AO]+,DO 
NOP 
CMPA.W A0,A2 
BNE L00P4 
MOVE.L #1 OOOH,AO 
DBNE D2,LOOPl ; EXECUTED 5 TIMES ? 

SEGM2 MOVE.L #1072H,A3 ; "SEGMENT2" 
MOVE.L #1010H,A1 ;ADDRESS 1010, AND 1072 

LOOPS MOVE.W [AO]+,DO ;WILL BE SKIPPED IN THIS 
NOP ;SEGMENT. 
CMPA.W A0,A1 
BNE LOOPS 
ADD #02H.A0 ;SKIP 1010. 
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NOP 
CMPA.W AO, A3 
BNE L00P6 
ADD #02H,A0 ; SKIP 1072. 

LOOP? MOVE.W [A0]+,D0 
NOP 
CMPA.W A0,A2 
BNE LOOP? 
MOVE.L #1000H,A0 
DBNE D3,LOOPS EXECUTED 4 TIMES ? 

SEGM3 MOVE.L #10F8H,A1 "SEGMENT 3" 
LOOPS MOVE.W [AO]+,DO IN THIS SEGMENT lOFS AND lOFA 

NOP WILL BE SKIPPED. 
CMPA.W A0,A1 
BNE LOOPS 
add #04H,A0 ;SKIP 10F8 & 10FA. 

L00P9 MOVE.W [A0]+,D0 
NOP 
CMPA.W A0,A2 
BNE LOOPS 
MOVE.L #1000H,A0 
DBNE D4,LOOPS EXECUTED 3 TIMES ? 

SEGM4 MOVE.L #1016H,A1 SEGMENT4. 
MOVE.L #10A6H,A3 HERE 1016 S 10A6 WILL BE 

LOOP10 MOVE.W [AO]+,DO SKIPPED. 
NOP 
CMPA.W A0,A1 
BNE L00P10 
ADD #2H,A0 ;SKIP 1016. 

LOOP11 MOVE.W [A0]+,D0 
NOP 
CMPA.W AO, A3 
BNE LOOP11 
ADD #02H,A0 ;SKIP 10A6. 

LOOP12 MOVE.W [A0]+,D0 
NOP 
CMPA.W A0,A2 
BNE L00P12 
MOVE.L #1000H,A0 
DBNE D5,LOOP10 EXECUTED 2 TIMES? 

SE6M5 MOVE.L #10c2H,A1 SEGMENTS. 
LOOP13 MOVE.W [AO]+,DO HERE 10C2 WILL BE SKIPPED. 

NOP 
CMPA.W A0,A1 
BNE L00P13 
ADD #2H,A0 ;SKIP 10C2 
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LOOP14 MOVE.W 
NOP 
CMPA.W 
BNE 
MOVE.L 
DBNE 
BRA 

[AO]+,DO 

A0,A2 
LOOP14 
#1000H,A0 
D6,LOOP13 
INIT 

;D0 NOT REPEAT SEGMENTS-
;G0 TO INIT TO REPEAT ALL OVER. 
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APPENDIX D. ADDGEN2 

"6800" 
9 

INIT 

SEGMl 
LOOPl 

L00P2 

SE6M2 
L00P3 

L00P4 

ADDRESS GENERATION ROUTINE "ADDGEN2" . 

;ALL ADDRESSES ARE IN HEX. 

; INITIALIZE STATUS REGISTER. 

D2 THRU D6 CONTROL THE No. OF 
TIMES SEGMENTS 1 THRU 5 ARE 
EXECUTED. 

"SEGMENT!". 
IN THIS SEGMENT ADDRESS 1030 
WILL BE SKIPPED. 
NOTE THAT 3 NOP INSTRUCTIONS 
ARE USED TO SIMULATE SLOWER 
ADDRESS ARRIVAL RATE AT THE 
LRU SUBMODULE. 
SKIP 1030. 

SEGM3 

ORG OOOH 
HEX 0000,2300 
HEX 0000,0400 
ORG 400H 
MOVE #0700H,SR 
MOVE. L #1100H,A2 
MOVE. L #1OOOH,AO 
MOVE. W #5,D2 
MOVE. W #3,D3 
MOVE. W #3,D4 
MOVE. W #2,D5 
MOVE. W #4,D6 
MOVE. L #1030H,A0 
MOVE. W [A0]+,D0 
NOP 
NOP 
NOP 
CMPA.W A0,A1 
BNE LOOPl 
ADD #02H,A0 
MOVE. W [AO]+,DO 
NOP 
NOP 
NOP 
CMPA. ,W A0,A2 
BNE L00P2 
MOVE. .L #1OOOH,AO 
DBNE D2,LOOPl 
MOVE .L #1072H,A1 
MOVE. .W [A0]+,D0 
NOP 
NOP 
NOP 
CMPA .W A0,A1 
BNE L00P3 
ADD #04H,A0 
MOVE .W [A0]+,D0 
NOP 
NOP 
NOP 
CMPA .W A0,A2 
BNE L00P4 
MOVE .L #1OOOH,AO 
DBNE D3,LOOP3 
MOVE -L #10F8H,A1 

EXECUTED 5 TIMES? 
"SEGMENT2". 

HERE 1072 61074 WILL BE 
SKIPPED. 

;SKIP 1072 61074. 

;EXECUTED 3 TIMES ? 
; "SEGMENT3". 
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LOOPS 

L00P6 

SEGM4 
L00P7 

LOOPS 

SEGM5 
L00P9 

LOOP10 

MOVE.W [AO]+,DO 
NOP 
NOP 
NOP 
CMPA.W A0,A1 
BNE LOOPS 
ADD #06H,A0 
MOVE.W [A0]+,D0 
NOP 
NOP 
NOP 
CMPA.W A0,A2 
BNE LOOPS 
MOVE.L #1000H,A0 
DBNE D4,LOOPS 
MOVE.L #1016H,A1 
MOVE.W [AO]+,DO 
NOP 
NOP 
NOP 
CMPA.W A0,A1 
BNE L00P7 
ADD #2H,A0 
MOVE.W [AO]+,DO 
NOP 
NOP 
NOP 
CMPA.W A0,A2 
BNE LoopS 
MOVE.L #1000H,A0 
DBNE DS,L00P7 
MOVE.L #10C2H,A1 
MOVE.W [A0]+,D0 
NOP 
NOP 
NOP 
CMPA.W A0,A1 
BNE LOOPS 
ADD #2H,A0 
MOVE.W [AO]+,DO 
NOP 
NOP 
NOP 
CMPA.W A0,A2 
BNE LOOP10 
MOVE.L #1000H,AO 
DBNE D6,LOOP9 
BRA INIT 

HERE 10F8,10FA, AND lOFC WILL 
BE SKIPPED. THE SEGMENT WILL 
BE REPEATED THREE TIMES. 

;SKIP 10F8,10FA&10FC. 

EXECUTED 3 TIMES ? 
"SEGMENT 4". 

HERE ONLY 1016 WILL BE SKIPPED 
AND THE SEGMENT WILL BE REPEATED 
TWO TIMES. 

EXECUTED 2 TIMES? 
"SEGMENTS". 

ONLY 10C2 WILL BE SKIPPED, 
AND THE SEGMENT WILL BE 
REPEATED 4 TIMES. 

; EXECUTED 4 TIMES? 
;REPEAT ALL 5 SEGMENTS. 
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"68000" 
; ADDRESS GENERATION ROUTINE "ADDGEN3". 

ORG OOOH 
HEX 0000,2300 ALL ADDRESSES ARE IN HEX. 
HEX 0000,0400 
ORG 400H 
MOVE #0700H,SR INITIALIZE STATUS REGISTER, 
MOVE.L #n00H,A2 SET A2 TO HIGHEST ADDRESS+2. 

INIT MOVE.L #1OOOH,AO SET AO TO LOWEST ADDRESS, 
MOVE.W #5,D2 D2 THRU DS WILL CONTROL THE 
MOVE.W #3,D3 No OF EXECUTIONS OF SEGMENTl 
MOVE.W #3,D4 THRU SEGMENTS RESPECTIVELY. 
MOVE.W #2,D5 
MOVE.W #4,D6 

SE6M1 MOVE.L #1030H,A1 "SEGMENTl". 
LOOPl MOVE.W [A0]+,D0 IN THIS SEGMENT ADDRESS IO3O 

CMPA.W A0,A1 ONLY WILL BE SKIPPED. 
BNE LOOPl 
ADD #02H,A0 

L00P2 MOVE.W [A0]+,D0 

CMPA.W A0,A2 
BNE L00P2 
MOVE.L #1OOOH,AO 
DBNE D2,LOOPl EXECUTED S TIMES ? 

SEGM2 MOVE.L #1072H,A1 "SEGMENT2". 
L00P3 MOVE.W [A0]+,D0 HERE 1072 AND 1074 WILL BE 

CMPA.W A0,A1 SKIPPED. 
BNE L00P3 
ADD #04H,A0 ;SKIP IO72&IO74. 

L00P4 MOVE.W [AO]+,DO 
CMPA.W A0,A2 
BNE L00P4 
MOVE.L #1OOOH,AO 
DBNE D3,LOOP3 ; EXECUTED 3 TIMES ? 

SEGM3 MOVE.L #10F8H,A1 ; "SEGMENT3" 
LOOPS MOVE.W [AO]+,DO 

CMPA.W A0,A1 
BNE LOOPS 
ADD #06H,A0 ;SK1P 10F8,10FA,10FC. 

LOOPS MOVE.W [AO]+,DO 
;SK1P 10F8,10FA,10FC. 

CMPA.W A0,A2 
BNE L00P6 
MOVE.L #lOOOH,AO 
DBNE D4,LOOPS ; EXECUTED 3 TIMES? 

SEGM4 MOVE.L #1016H,A1 ; "SEGMENT4". 
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LOOP? MOVE.W [AO]+,DO 
CMPA.W A0,A1 
BNE LOOP? 
ADD #2H,A0 ;SKIP 1016. 

LOOPS MOVE.W [AO]+,DO 
CMPA.W A0,A2 
BNE LOOPS 
MOVE.L #1000H,A0 
DBNE 05,LOOP? ; EXECUTED 2 TIMES ? 

SEGM5 MOVE.L #10C2H,A1 "SEGMENTS" 
L00P9 MOVE.W [AO]+,DO 

CMPA.W A0,A1 
BNE LOOP9 
ADD #2H,A0 ;SKIP 10C2. 

LOOP10 MOVE.W [AO]+,DO 
CMPA.W A0,A2 
BNE LOOP10 
MOVE.L #100H,A0 
DBNE D6,L00P9 ;EXECUTED 4 TIMES ? 
BRA INIT ; REPEAT ALL SEGMENTS 
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